资源描述
重庆育才中学七年级数学压轴题专题
一、七年级上册数学压轴题
1.已知:,OB、OM、ON,是 内的射线.
(1)如图 1,若 OM 平分 , ON平分.当射线OB 绕点O 在 内旋转时,= 度.
(2)OC也是内的射线,如图2,若 ,OM平分,ON平分,当射线OB绕点O在内旋转时,求的大小.
(3)在(2)的条件下,当射线OB从边OA开始绕O点以每秒的速度逆时针旋转t秒,如图3,若,求t的值.
2.如图一,点在线段上,图中有三条线段、和,若其中一条线段的长度是另外一条线段长度的倍,则称点是线段的“巧点”.
(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”)
(问题解决)
(2)如图二,点和在数轴上表示的数分别是和,点是线段的巧点,求点在数轴上表示的数。
(应用拓展)
(3)在(2)的条件下,动点从点处,以每秒个单位的速度沿向点匀速运动,同时动点从点出发,以每秒个单位的速度沿向点匀速运动,当其中一点到达中点时,两个点运动同时停止,当、、三点中,其中一点恰好是另外两点为端点的线段的巧点时,直接写出运动时间的所有可能值.
3.如图,在数轴上点A表示的数是-3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B之间,且到点B的距离是到点A距离的2倍.
(1)点B表示的数是;点C表示的数是;
(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,当P运动到C点时,点Q与点B的距离是多少?
(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB.在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P表示的数;若不存在,请说明理由.
4.如图,在数轴上点表示数,点表示数b,点表示数c,其中.若点与点B之间的距离表示为,点与点之间的距离表示为,点在点之间,且满足 .
(1) ;
(2)若点分别从、同时出发,相向而行,点的速度是1个单位/秒,点的速度是2个单位秒,经过多久后相遇.
(3)动点从点位置出发,沿数轴以每秒1个单位的速度向终点运动,设运动时间为秒,当点运动到点时,点从点出发,以每秒2个单位的速度沿数轴向点运动,点到达点后,再立即以同样的速度返回,运动到终点,问:在点开始运动后,两点之间的距离能否为2个单位?如果能,请求出运动的时间的值以及此时对应的点所表示的数;如果不能,请说明理由.
5.已知实数,,在数轴上所对应的点分别为A,B,C,其中b是最小的正整数,且,,满足.两点之间的距离可用这两点对应的字母表示,如:点A与点B之间的距离可表示为AB.
(1) , , ;
(2)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B以每秒2个单位长度的速度向右运动,点C以每秒5个单位长度的速度向右运动,假设运动时间为t秒,则 , ;(结果用含t的代数式表示)这种情况下,的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值;
(3)若A,C两点的运动和(2)中保持不变,点B 变为以每秒n()个单位长度的速度向右运动,当时,,求n的值.
6.如图,一个电子跳蚤从数轴上的表示数a的点出发,我们把“向右运动两个单位或向左运动一个单位”作为一次操作,如:当时,则一次操作后跳蚤可能的位置有两个,所表示的数分别是2和5.
(1)若,则两次操作后跳蚤所在的位置表示的数可能是多少?
(2)若,且跳蚤向右运动了20次,向左运动了n次.
①它最后的位置所表示的数是多少?(用含n的代数式表示)
②若它最后的位置所表示的数为10,求n的值.
(3)若,跳蚤共进行了若干次操作,其中有50次是向左运动,且最后的位置所表示的数为260,求操作的次数.
7.如图,在数轴上点表示数,点表示数,,满足.
(1)求,的值;
(2)若点与点之间的距离表示为,点与点之间的距离表示为,请在数轴上找一点,使,求点表示的数;
(3)如图,一小球甲从点处以2个单位/秒的速度向左运动;同时另一个小球乙从点处以3个单位/秒的速度也向左运动,设运动的时间为(秒).
①分别表示出(秒)时甲、乙两小球在数轴上所表示的数(用含的代数式表示);
②求甲、乙两小球相距两个单位时所经历的时间.
8.在数轴上,点代表的数是,点代表的数是2,代表点与点之间的距离,
(1)填空
①______.
②若点为数轴上点与之间的一个点,且,则______.
③若点为数轴上一点,且,则______.
(2)若点为数轴上一点,且点到点点的距离与点到点的距离的和是35,求点表示的数;
(3)若从点出发,从原点出发,从点出发,且、、同时向数轴负方向运动,点的运动速度是每秒6个单位长度,点的运动速度是每秒8个单位长度,点的运动速度是每秒2个单位长度,在、、同时向数轴负方向运动过程中,当其中一个点与另外两个点的距离相等时,求这时三个点表示的数各是多少?
9.已知,一个点从数轴上的原点开始.先向左移动6cm到达A点,再从A点向右移动10cm到达B点,点C是线段AB的中点.
(1)点C表示的数是 ;
(2)若点A以每秒2cm的速度向左移动,同时C、B两点分别以每秒1cm、4cm的速度向右移动,设移动时间为t秒,
①运动t秒时,点C表示的数是 (用含有t的代数式表示);
②当t=2秒时,CB•AC的值为 .
③试探索:点A、B、C在运动的过程中,线段CB与AC总有怎样的数量关系?并说明理由.
10.(背景知识)
数轴是数学中的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现了一些重要的规律:若数轴上点A,B表示的数分别为a,b,则A,B两点之间的距离,线段的中点表示的数为.
(问题情境)
如图,数轴上点A表示的数为,点B表示的数为8,点P从点A出发,以每秒4个单位的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒1个单位的速度向右匀速运动.设运动时间为.
(综合运用)
(1)填空:
①A,B两点间的距离______,线段的中点表示的数为________.
②用含t的代数式表示:后,点P表示的数为_______,点Q表示的数为_______.
(2)求当t为何值时,P,Q两点相遇,并写出相遇点表示的数.
(3)求当t为何值时,.
(4)若M为的中点,N为的中点,点P在运动过程中,线段的长是否发生变化?若变化,请说明理由,若不变,请求出线段的长.
11.如图,已知∠AOB=120°,射线OP从OA位置出发,以每秒2°的速度顺时针向射线OB旋转;与此同时,射线OQ以每秒6°的速度,从OB位置出发逆时针向射线OA旋转,当射线OQ达到OA后,两条射线同时停止运动.设旋转时间为t秒.
(1)分别求出当t=5和t=18时,∠POQ的度数;
(2)当OP与OQ重合时,求t的值;
(3)当∠POQ=40°时,求t的值.
12.已知直线AB过点O,∠COD=90°,OE是∠BOC的平分线.
(1)操作发现:①如图1,若∠AOC=40°,则∠DOE=
②如图1,若∠AOC=α,则∠DOE= (用含α的代数式表示)
(2)操作探究:将图1中的∠COD绕顶点O顺时针旋转到图2的位置,其他条件不变,②中的结论是否成立?试说明理由.
(3)拓展应用:将图2中的∠COD绕顶点O逆时针旋转到图3的位置,其他条件不变,若∠AOC=α,求∠DOE的度数,(用含α的代数式表示)
13.已知:,、、是内的射线.
(1)如图1,若平分,平分.当射线绕点在内旋转时,求的度数.
(2)也是内的射线,如图2,若,平分,平分,当射线绕点在内旋转时,求的大小.
14.已知,O为直线AB上一点,射线OC将分成两部分,若时,
(1)如图1,若OD平分,OE平分,求的度数;
(2)如图2,在(1)的基础上,将以每秒的速度绕点O顺时针旋转,同时射线OC以每秒的速度绕点O顺时针旋转,设运动时间为.
①t为何值时,射线OC平分?
②t为何值时,射线OC平分?
15.如图,点O在直线AB上,.
(1)如图①,当的一边射线OC在直线AB上(即OC与OA重合),另一边射线OD在直线AB上方时,OF是的平分线,则的度数为_______.
(2)在图①的基础上,将绕着点O顺时针方向旋转(旋转角度小于),OE是的平分线,OF是的平分线,试探究的大小.
①如图②,当的两边射线OC、OD都在直线AB的上方时,求的度数.
小红、小英对该问题进行了讨论:
小红:先求出与的和,从而求出与的和,就能求出的度数.
小英:可设为x度,用含x的代数式表示、的度数,也能求出的度数.请你根据她们的讨论内容,求出的度数.
②如图③,当的一边射线OC在直线AB的上方,另一边射线OD在直线AB的下方时,小红和小英认为也能求出的度数.你同意她们的看法吗?若同意,请求出的度数;若不同意,请说明理由.
③如图④,当的两边射线OC、OD都在直线AB的下方时,能否求出的度数?若不能求出,请说明理由;若能求出,请直接写出的度数.
16.(学习概念) 如图1,在∠AOB的内部引一条射线OC,则图中共有3个角,分别是∠AOB、∠AOC和∠BOC.若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“好好线”.
(理解运用)
(1)①如图2,若∠MPQ=∠NPQ,则射线PQ ∠MPN的“好好线”(填“是”或“不是”);
②若∠MPQ≠∠NPQ,∠MPQ=α,且射线PQ是∠MPN的“好好线”,请用含α的代数式表示∠MPN;
(拓展提升)
(2)如图3,若∠MPN=120°,射线PQ绕点P从PN位置开始,以每秒12°的速度逆时针旋转,旋转的时间为t秒.当PQ与PN成110°时停止旋转.同时射线PM绕点P以每秒6°的速度顺时针旋转,并与PQ同时停止. 当PQ、PM其中一条射线是另一条射线与射线PN的夹角的“好好线”时,则t= 秒.
17.如图,∠AOB=150°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每秒6°;射线OD从OB开始,绕点O顺时针旋转,旋转的速度为每秒14°,OC和OD同时旋转,设旋转的时间为t秒(0≤t≤25).
(1)当t为何值时,射线OC与OD重合;
(2)当t为何值时,∠COD=90°;
(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC、OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请直接写出所有满足题意的t的取值,若不存在,请说明理由.
18.定义:在同一平两内,有公共端点的三条射线中,一条射线是另两条射线组成夹角的角平分线,我们称这三条射线为“共生三线”.
如图为一量角器的平面示意图,为量角器的中心.作射线,,,并将其所对应的量角器外圈刻度分别记为,,.
(1)若射线,,为“共生三线”,且为的角平分线.
①如图1,,,则______;
②当,时,请在图2中作出射线,,,并直接写出的值;
③根据①②的经验,得______(用含,的代数式表示).
(2)如图3,,.在刻度线所在直线上方区域内,将,,按逆时针方向绕点同时旋转,旋转速度分别为每秒,,,若旋转秒后得到的射线,,为“共生三线”,求的值.
19.如图1,为直线上一点,过点作射线,,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方.(注:本题旋转角度最多.)
(1)将图1中的三角板绕点以每秒的速度沿顺时针方向旋转.如图2,经过秒后,______度(用含的式子表示),若恰好平分,则______秒(直接写结果).
(2)在(1)问的基础上,若三角板在转动的同时,射线也绕点以每秒的速度沿顺时针方向旋转,如图3,经过秒后,______度(用含的式子表示)若平分,求为多少秒?
(3)若(2)问的条件不变,那么经过秒平分?(直接写结果)
20.如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,c满足|a+3|+(c﹣9)2=0,b=1.
(1)a= ,c= ;
(2)若将数轴折叠,使得A点与点C重合,则点B与数 表示的点重合.
(3)在(1)的条件下,若点P为数轴上一动点,其对应的数为x,求当x取何值时代数式|x﹣a|﹣|x﹣c|取得最大值,并求此最大值.
(4)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点C处以2个单位/秒的速度也向左运动,在点Q到达点B后,以原来的速度向相反的方向运动,设运动的时间为t(秒),求第几秒时,点P、Q之间的距离是点C、Q之间距离的2倍?
【参考答案】***试卷处理标记,请不要删除
一、七年级上册数学压轴题
1.(1)80;(2)70°;(3)26
【分析】
(1)根据角平分线的定义进行角的计算即可;
(2)依据OM平分∠AOC,ON平分∠BOD,即可得到∠MOC=∠AOC,∠BON=∠BOD,再根据∠MO
解析:(1)80;(2)70°;(3)26
【分析】
(1)根据角平分线的定义进行角的计算即可;
(2)依据OM平分∠AOC,ON平分∠BOD,即可得到∠MOC=∠AOC,∠BON=∠BOD,再根据∠MON=∠MOC+∠BON-∠BOC进行计算即可;
(3)依据∠AOM=(10°+2t+20°),∠DON=(160°-10°-2t),∠AOM:∠DON=2:3,即可得到3(30°+2t)=2(150°-2t),进而得出t的值.
【详解】
解:(1)∵∠AOD=160°,OM平分∠AOB,ON平分∠BOD,
∴∠MOB=∠AOB,∠BON=∠BOD,
∴∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°,
故答案为:80;
(2)∵OM平分∠AOC,ON平分∠BOD,
∴∠MOC=∠AOC,∠BON=∠BOD,
∴∠MON=∠MOC+∠BON-∠BOC
=∠AOC+∠BOD-∠BOC
=(∠AOC+∠BOD)-∠BOC
=×180-20
=70°;
(3)∵∠AOM=(2t+20°),∠DON=(160°-2t),
又∠AOM:∠DON=2:3,
∴3(20°+2t)=2(160°-2t)
解得,t=26.
答:t为26秒.
【点睛】
本题考查的是角平分线的定义和角的计算,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线,解决本题的关键是理解动点运动情况.
2.(1)是;(2)10或0或20;(3) ;t=6;;t=12;;.
【分析】
(1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可;
(2)由题意设C点表示的数为
解析:(1)是;(2)10或0或20;(3) ;t=6;;t=12;;.
【分析】
(1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可;
(2)由题意设C点表示的数为x,再根据新定义列出合适的方程即可;
(3)根据题意先用t的代数式表示出线段AP,AQ,PQ,再根据新定义列出方程,得出合适的解即可求出t的值.
【详解】
解:(1)因原线段是中点分成的短线段的2倍,所以线段的中点是这条线段的巧点,
故答案为:是;
(2)设C点表示的数为x,则AC=x+20,BC=40-x,AB=40+20=60,
根据“巧点”的定义可知:
①当AB=2AC时,有60=2(x+20),
解得,x=10;
②当BC=2AC时,有40-x=2(x+20),
解得,x=0;
③当AC=2BC时,有x+20=2(40-x),
解得,x=20.
综上,C点表示的数为10或0或20;
(3)由题意得,
(i)、若0≤t≤10时,点P为AQ的“巧点”,有
①当AQ=2AP时,60-4t=2×2t,
解得,,
②当PQ=2AP时,60-6t=2×2t,
解得,t=6;
③当AP=2PQ时,2t=2(60-6t),
解得,;
综上,运动时间的所有可能值有;t=6;;
(ii)、若10<t≤15时,点Q为AP的“巧点”,有
①当AP=2AQ时,2t=2×(60-4t),
解得,t=12;
②当PQ=2AQ时,6t-60=2×(60-4t),
解得,;
③当AQ=2PQ时,60-4t=2(6t-60),
解得,.
综上,运动时间的所有可能值有:t=12;;.
故,运动时间的所有可能值有:;t=6;;t=12;;.
【点睛】
本题是新定义题,是数轴的综合题,主要考查数轴上的点与数的关系,数轴上两点间的距离,一元一次方程的应用,解题的关键是根据新定义列出方程并进行求解.
3.(1)15,3;(2)3;(3)存在,1或
【分析】
(1)根据两点间的距离公式可求点表示的数;根据线段的倍分关系可求点表示的数;
(2)算出点P运动到点C的时间即可求解;
(3)分点在点左侧时,点
解析:(1)15,3;(2)3;(3)存在,1或
【分析】
(1)根据两点间的距离公式可求点表示的数;根据线段的倍分关系可求点表示的数;
(2)算出点P运动到点C的时间即可求解;
(3)分点在点左侧时,点在点右侧时两种情况讨论即可求解.
【详解】
解:(1)点表示的数是;点表示的数是.
故答案为:15,3;
(2)当P运动到C点时,s,
则,点Q与点B的距离是:;
(3)假设存在,
当点在点左侧时,,,
,
,
解得.
此时点表示的数是1;
当点在点右侧时,,,
,
,
解得.
此时点表示的数是.
综上所述,在运动过程中存在,此时点表示的数为1或.
【点睛】
考查了数轴、两点间的距离,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.
4.(1)5;(2)2秒;(3)当t的值为6或2时,M、N两点之间的距离为2个单位,此时点M表示的数为5或9.
【分析】
(1)用b表示BC、AB的长度,结合BC=2AB可求出b值;
(2)根据相遇时间
解析:(1)5;(2)2秒;(3)当t的值为6或2时,M、N两点之间的距离为2个单位,此时点M表示的数为5或9.
【分析】
(1)用b表示BC、AB的长度,结合BC=2AB可求出b值;
(2)根据相遇时间=相遇路程÷速度和,即可得出结论;
(3)用含t的代数式表示出点M,N表示的数,结合MN=2,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.
【详解】
(1)∵.
又∵点B在点A、C之间,且满足BC=2AB,
∴9-b=2(b-3),
∴b=5.
(2)AC=9-3=6
6÷(2+1)=2,即两秒后相遇.
(3)M到达B点时t=(5-3)÷1=2(秒);
M到达C点时t=(9-3)÷1=6(秒);
N到达C时t=(9-3)÷2+2=5(秒)
N回到A点用时t=(9-3)÷2×2+2=8(秒)
当0≤t≤5时,N没有到达C点之前,
此时点N表示的数为3+2(t-2)=2t-1;
M表示的数为3+t
MN==2
解得 (舍去)或
此时M表示的数为5
当5≤t≤6时,N从C点返回,M还没有到达终点C
点N表示的数为9-2(t-5)=-2t+19;
M表示的数为3+t
MN==2
解得或(舍去)
此时M表示的数为9
当6≤t≤8时,N从C点返回,M到达终点C
此时M表示的数是9
点N表示的数为9-2(t-5)=-2t+19;
MN==2
解得
此时M表示的数是9
综上所述:当t的值为6或2时,M、N两点之间的距离为2个单位,此时点M表示的数为5或9.
【点睛】
本题考查了数轴上两点间的距离以及一元一次方程的应用,解题的关键是找准等量关系,正确列出一元一次方程.
5.(1)-2,1,5;(2)不变,值为1;(3)或
【分析】
(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;
(2)用关于
解析:(1)-2,1,5;(2)不变,值为1;(3)或
【分析】
(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;
(2)用关于t的式子表示BC和AB即可求解;
(3)分别求出当t=3时,A、B、C表示的数,得到AC和BC,根据AC=2BC列出方长,解之即可.
【详解】
解:(1)∵,b是最小的正整数,
∴c-5=0,a+2b=0,b=1,
∴a=-2,b=1,c=5,
故答案为:-2,1,5;
(2)∵点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,
∴t秒后,A表示的数为-t-2,B表示的数为2t+1,C表示的数为5t+5,
∴BC=5t+5-(2t+1)=3t+4,AB=2t+1-(-t-2)=3t+3,
∴BC-AB=3t+4-(3t+3)=1,
∴BC-AB的值不会随着时间t的变化而改变,BC-AB=1;
(3)当t=3时,
点A表示-2-3=-5,点B表示1+3n,点C表示5+5×3=20,
∴AC=20-(-5)=25,BC=,
∵AC=2BC,
则25=2,
则25=2(19-3n),或25=2(3n-19),
解得:n=或.
【点睛】
此题考查一元一次方程的实际运用,以及数轴与绝对值,正确理解AB,BC的变化情况是关键.
6.(1)-2或1或4;(2)①43-n;②33;(3)210次
【分析】
(1)先得出一次操作后所可能表示的数,再得出第二次操作后的数;
(2)①根据题意列出代数式即可;
②令①中代数式的值为10,求
解析:(1)-2或1或4;(2)①43-n;②33;(3)210次
【分析】
(1)先得出一次操作后所可能表示的数,再得出第二次操作后的数;
(2)①根据题意列出代数式即可;
②令①中代数式的值为10,求出n值即可;
(3)设跳蚤向右运动了m次,根据题意列出方程,解出m值,再加上50即可.
【详解】
解:(1)∵a=0,
则一次操作后表示的数为-1或2,
则两次操作后表示的数为-2或1或4;
(2)①由题意可得:
a=3时,向右运动了20次,向左运动了n次,
∴最后表示的数为:3+20×2-n=43-n;
②令43-n=10,
则n=33;
(3)设跳蚤向右运动了m次,
根据题意可得:
-10-50+2m=260,
则m=160,
∴操作次数为50+160=210.
【点睛】
本题考查了数轴,一元一次方程,解题的关键是要理解“一次操作”的意义.
7.(1)a=-2,b=6;(2)或14;(3)①甲:-2-2t,乙:6-3t;②6秒或10秒
【分析】
(1)根据非负数的性质求得a=-2,b=6;
(2)分C点在线段AB上和线段AB的延长线上两种情
解析:(1)a=-2,b=6;(2)或14;(3)①甲:-2-2t,乙:6-3t;②6秒或10秒
【分析】
(1)根据非负数的性质求得a=-2,b=6;
(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;
(3)①根据两个小球的运动情况直接列式即可;
②根据甲、乙两小球在数轴上表示的数列出关于t的方程,解方程即可.
【详解】
解:(1)∵,
∴a+2=0,b-6=0,
解得,a=-2,b=6,
故答案为:a=-2,b=6;
(2)设数轴上点C表示的数为c.
∵AC=2BC,
∴|c-a|=2|c-b|,即|c+2|=2|c-6|.
∵AC=2BC>BC,
∴点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.
①当C点在线段AB上时,则有-2≤c≤6,
得c+2=2(6-c),解得;
②当C点在线段AB的延长线上时,则有c>6,
得c+2=2(c-6),解得c=14.
故当AC=2BC时,c=或c=14;
(3)①∵甲球运动的路程为:2•t=2t,OA=2,
∴甲球在数轴上表示的数为-2t-2;
乙球运动的路程为:3•t=3t,OB=6,
乙球在数轴上表示的数为:6-3t;
②由题意得:,
解得:t=10或t=6,
∴甲、乙两小球相距两个单位时所经历的时间为6秒或10秒.
【点睛】
本题考查了非负数的性质,一元一次方程,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.
8.(1)①14;②8;③16或12;(2)或;(3)当时,点表示的数为,点表示的数为,点表示的数为;当时,点表示的数为,点表示的数为,点表示的数为
【分析】
(1)①根据距离定义可直接求得答案14.②
解析:(1)①14;②8;③16或12;(2)或;(3)当时,点表示的数为,点表示的数为,点表示的数为;当时,点表示的数为,点表示的数为,点表示的数为
【分析】
(1)①根据距离定义可直接求得答案14.②根据题目要求,P在数轴上点A与B之间,所以根据BP=AB−AP进行求解.③需要考虑两种情况,即P在数轴上点A与B之间时和当P不在数轴上点A与B之间时.当P在数轴上点A与B之间时,AP=AB−BP.当P不在数轴上点A与B之间时,此时有两种情况,一种是超越A点,在A点左侧,此时BP>14,不符合题目要求.另一种情况是P在B点右侧,此时根据AP=AB+BP作答.
(2)根据前面分析,C不可能在AB之间,所以,C要么在A左侧,要么在B右侧.根据这两种情况分别进行讨论计算.
(3)因为M点的速度为每秒2个单位长度,远小于P、Q的速度,因此M点永远在P、Q的右侧.“当其中一个点与另外两个点的距离相等时”这句话可以理解成一点在另外两点正中间.因此有几种情况进行讨论,第一是Q在P和M的正中间,另一种是P在Q和M的正中间.第三种是PQ重合时,MP=MQ,三种情况分别列式进行计算求解.
【详解】
(1)①∵点代表的数是,点代表的数是2.
∴.
故答案为:14.
②∵点为数轴上之间的一点,且,
∴.
故答案为:8.
③∵点为数轴上一点,且,
∴,
∴或12.
故答案为:16或12.
(2)∵点到点的距离与点到点的距离之和为35.
当点在点左侧时,
,
∴,
∴点表示的数为.
当点在点右侧时,
,
∴,
∴点表示的数为,
∴点表示的数为或.
(3)①当点到点、两个点距离相等时,
,
解得.
此时点表示的数为,
点表示的数为,
点表示的数为.
②当点到、两个点距离相等时,
,
解得(舍).
③当、重合时,即点到、两个点距离相等,
,
解得,
此时点表示的数为,
点表示的数为.
点表示的数为.
因此,当时,点表示的数为,点表示的数为,点表示的数为;当时,点表示的数为,点表示的数为,点表示的数为.
【点睛】
本题考查了动点问题与一元一次方程的应用.在充分理解题目要求的基础上,可借助数轴用数形结合的方法求解.在解答过程中,注意动点问题的多解可能,并针对每一种可能进行讨论分析.
9.(1)-1;(2)①﹣1+t;②121;③线段CB与AC相等,理由详见解析.
【分析】
(1)依据条件即可得到点A表示﹣6,点B表示﹣6+10=4,再根据点C是线段AB的中点,即可得出点C表示的数;
解析:(1)-1;(2)①﹣1+t;②121;③线段CB与AC相等,理由详见解析.
【分析】
(1)依据条件即可得到点A表示﹣6,点B表示﹣6+10=4,再根据点C是线段AB的中点,即可得出点C表示的数;
(2)依据点C表示的数为﹣1,点以每秒1cm的速度向右移动,即可得到运动t秒时,点C表示的数是﹣1+t;
②依据点A表示的数为﹣6﹣2×2=﹣10,点B表示的数为4+4×2=12,点C表示的数是﹣1+2=1,即可得到CB•AC的值;
③依据点A表示的数为﹣6﹣2t,点B表示的数为4+4t,点C表示的数是﹣1+t,即可得到点A、B、C在运动的过程中,线段CB与AC相等.
【详解】
解:(1)∵一个点从数轴上的原点开始,先向左移动6cm到达A点,再从A点向右移动10cm到达B点,
∴点A表示﹣6,点B表示﹣6+10=4,
又∵点C是线段AB的中点,
∴点C表示的数为=﹣1,
故答案为:﹣1.
(2)①∵点C表示的数为﹣1,点以每秒1cm的速度向右移动,
∴运动t秒时,点C表示的数是﹣1+t,
故答案为:﹣1+t;
②由题可得,当t=2秒时,点A表示的数为﹣6﹣2×2=﹣10,点B表示的数为4+4×2=12,点C表示的数是﹣1+2=1,
∴当t=2秒时,AC=11,BC=11,
∴CB•AC=121,
故答案为:121;
③点A、B、C在运动的过程中,线段CB与AC相等.理由:
由题可得,点A表示的数为﹣6﹣2t,点B表示的数为4+4t,点C表示的数是﹣1+t,
∴BC=(4+4t)﹣(﹣1+t)=5+3t,AC=(﹣1+t)﹣(﹣6﹣2t)=5+3t,
∴点A、B、C在运动的过程中,线段CB与AC相等.
【点睛】
本题考查数轴上动点问题,整式的加减,与线段有关的动点问题.(1)理解数轴上线段的中点表示的数是两个端点所表示的数的和除以2;(2)掌握数轴上两点之间的距离求解方法是解决问题的关键,数轴上两点之间对应的距离等于它们所表示的数差的绝对值.
10.(1)①10,3;②−2+4t,8+t;(2)t=,相遇点表示的数为;(3)t=5或;(4)线段的长不发生变化,MN=5
【分析】
(1)①根据A,B两点之间的距离,线段的中点表示的数为,即可得到答
解析:(1)①10,3;②−2+4t,8+t;(2)t=,相遇点表示的数为;(3)t=5或;(4)线段的长不发生变化,MN=5
【分析】
(1)①根据A,B两点之间的距离,线段的中点表示的数为,即可得到答案;②根据题意直接表示出P,Q所对应的数,即可;
(2)当P、Q两点相遇时,P、Q表示的数相等列方程,得到t的值,进而得到 P、Q相遇的点所对应的数;
(3)由t秒后,点P表示的数−2+4t,点Q表示的数为8+t,于是得到PQ的表达式,结合,列方程即可得到结论;
(4)由点M表示的数为,点N表示的数为,即可得到结论.
【详解】
解:(1)①A、B两点间的距离AB=|−2−8|=10,线段AB的中点表示的数为:,
故答案是:10,3;
②由题意可得,后,点P表示的数为:−2+4t,点Q表示的数为:8+t,
故答是:−2+4t,8+t;
(2)∵当P、Q两点相遇时,P、Q表示的数相等
∴−2+4t=8+t,
解得:t=,
∴当t=时,P、Q相遇,
此时,8+t=8+,
∴相遇点表示的数为;
(3)∵t秒后, PQ=|(−2+4t)−(8+t)|=|3t−10|,
∵=×10=5,
∴|3t−10|=5,
解得:t=5或,
∴当t=5或,;
(4)∵M为的中点,N为的中点,
∴点M表示的数为 ,
点N表示的数为 ,
∴MN=,
即:线段的长不发生变化,MN=5.
【点睛】
本题考查了一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程是解题的关键 .
11.(1)80°,24°;(2)t=15;(3)10或20
【分析】
(1)代入计算即可求解;
(2)根据角度的相遇问题列出方程计算即可求解;
(3)分两种情况:当0<t≤15时;当15<t≤20时;列
解析:(1)80°,24°;(2)t=15;(3)10或20
【分析】
(1)代入计算即可求解;
(2)根据角度的相遇问题列出方程计算即可求解;
(3)分两种情况:当0<t≤15时;当15<t≤20时;列出方程计算即可求解.
【详解】
解:(1)当t=5时,∠AOP=2t=10°,∠BOQ=6t=30°,
∴∠POQ=∠AOB﹣∠AOP﹣∠BOQ=120°﹣10°﹣30°=80°;
当t=18时,∠AOP=2t=36°,∠BOQ=6t=108°,
∴∠AOQ=120°﹣108°=12°,
∴∠POQ=∠AOP﹣∠AOQ=36°﹣12°=24°;
(2)当OP与OQ重合时,
依题意得:2t+6t=120,
解得:t=15;
(3)当0<t≤15时,
依题意得:2t+6t+40=120,
解得:t=10,
当15<t≤20时,
依题意得:2t+6t﹣40=120,
解得:t=20,
∴当∠POQ=40°时,t的值为10或20.
【点睛】
本题考查一元一次方程的应用,解题的关键是理解题意学会由分类讨论的思想思考问题,属于中考常考题型.
12.(1)20°,;(2)成立,理由见详解;(3)180°-.
【分析】
(1)如图1,根据平角的定义和∠COD=90°,得∠AOC+∠BOD=90°,从而∠BOD=50°,OE是∠BOC的平分线,可得
解析:(1)20°,;(2)成立,理由见详解;(3)180°-.
【分析】
(1)如图1,根据平角的定义和∠COD=90°,得∠AOC+∠BOD=90°,从而∠BOD=50°,OE是∠BOC的平分线,可得∠BOE=70°,由角的和差得∠DOE=20°;同理可得:∠DOE=α;
(2)如图2,根据平角的定义得:∠BOC=180°-α,由角平分线定义得:∠EOC=∠BOC=90°-α,根据角的差可得(1)中的结论还成立;
(3)同理可得:∠DOE=∠COD+∠COE=180°-α.
【详解】
解:(1)如图1,∵∠COD=90°,
∴∠AOC+∠BOD=90°,
∵∠AOC=40°,
∴∠BOD=50°,
∴∠BOC=∠COD+∠BOD=90°+50°=140°,
∵OE平分∠BOC,
∴∠BOE=∠BOC=70°,
∴∠DOE=∠BOE-∠BOD=20°,
②如图1,由(1)知:∠AOC+∠BOD=90°,
∵∠AOC=α,
∴∠BOD=90°﹣α,
∴∠BOC=∠COD+∠BOD=90°+90°﹣α=180°﹣α,
∵OE平分∠BOC,
∴∠BOE=∠BOC=90°﹣α,
∴∠DOE=∠BOE﹣∠BOD=90°﹣α﹣(90°﹣α)=α,
(2)(1)中的结论还成立,理由是:
如图2,∵∠AOC+∠BOC=180°,∠AOC=α,
∴∠BOC=180°﹣α,
∵OE平分∠BOC,
∴∠EOC=∠BOC=90°﹣α,
∵∠COD=90°,
∴∠DOE=∠COD﹣∠COE=90°﹣(90°﹣α)=α;
(3)如图3,∵∠AOC+∠BOC=180°,∠AOC=α,
∴∠BOC=180°﹣α,
∵OE平分∠BOC,
∴∠EOC=∠BOC=90°﹣α,
∵∠COD=90°,
∴∠DOE=∠COD+∠COE=90°+(90°﹣α)=180°﹣α.
【点睛】
本题考查了角平分线的定义、平角的定义及角的和与差,能根据图形确定所求角和已知各角的关系是解此题的关键.
13.(1);(2)
【分析】
(1)根据角平分线的定义求出和,然后根据代入数据进行计算即可得解;
(2)根据角平分线的定义表示出和,
展开阅读全文