资源描述
湖北仙桃中学人教版七年级下学期期末压轴难题数学试题
一、选择题
1.如图,A点在直线DE上,在∠BAD,∠BAE,∠BAC,∠CAE,∠C中,∠B的同旁内角有( )
A.2个 B.3个 C.4个 D.5个
2.在以下现象中,属于平移的是( )
①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程.
A.①② B.②④ C.②③ D.③④
3.在平面直角坐标系中,下列点中位于第四象限的是( )
A. B. C. D.
4.下列四个命题:①的平方根是;②是5的算术平方根;③经过一点有且只有一条直线与这条直线平行;④两条直线被第三条直线所截,同旁内角互补.其中真命题有( )
A.0个 B.1个 C.2个 D.3个
5.如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内CD上方的一点(点E不在直线AB,CD,AC上),设∠BAE=,∠DCE=.下列各式:①+,②﹣,③﹣,④180°﹣﹣,⑤360°﹣﹣中,∠AEC的度数可能是( )
A.①②③ B.①②④⑤ C.①②③⑤ D.①②③④⑤
6.若,,则( )
A.632.9 B.293.8 C.2938 D.6329
7.如图,AB∥CD,直线EF分别交AB、CD于点E、F,FH平分∠EFD,若∠1=110°,则∠2的度数为( )
A.45° B.40° C.55° D.35°
8.如图,长方形的各边分别平行于轴、轴,物体甲和物体乙由点同时出发,沿长方形的边做环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动则两个物体运动后的第2021次相遇地点的坐标是( )
A. B. C. D.
二、填空题
9.若+=0,则xy=__________.
10.在平面直角坐标系中,若点和点关于轴对称,则____.
11.如图,已知△ABC是锐角三角形,BE、CF分别为∠ABC与∠ACB的角平分线,BE、CF相交于点O,若∠A=50°,则∠BOC=_______.
12.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为_____.
13.如图,将一张长方形纸片沿折叠后,点,分别落在,的位置,若,则的度数为______.
14.材料:一般地,n个相同因数a相乘:记为.如,此时3叫做以2为底的8的对数,记为(即).那么_____,_____.
15.若点P(2m+4,3m+3)在x轴上,则点P的坐标为________.
16.如图,在平面直角坐标系上有点A(1,0),第一次点A跳动至点A1(﹣1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(﹣2,2),第四次点A3跳动至点A4(3,2),…依此规律跳动下去,则点A2021与点A2022之间的距离是_______.
三、解答题
17.计算:
(1)
(2)
18.求下列各式中的值:
(1);
(2).
19.如图,∠1=∠2,∠3=∠C,∠4=∠5.请说明BF//DE的理由.(请在括号中填上推理依据)
解:∵∠1=∠2(已知)
∴CF//BD( )
∴∠3+∠CAB=180°( )
∵∠3=∠C(已知)
∴∠C+∠CAB=180°(等式的性质)
∴AB//CD( )
∴∠4=∠EGA(两直线平行,同位角相等)
∵∠4=∠5(已知)
∴∠5=∠EGA(等量代换)
∴ED//FB( )
20.如图,三角形的顶点都在格点上,将三角形向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:
(1)平移后的三个顶点坐标分别为:______,______,______;
(2)画出平移后三角形;
(3)求三角形的面积.
21.已知某正数的两个不同的平方根是3a﹣14和a+2;b+11的立方根为﹣3;c是的整数部分;
(1)求a+b+c的值;
(2)求3a﹣b+c的平方根.
二十二、解答题
22.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.
(1)请求出图中阴影部分(正方形)的面积和边长
(2)若边长的整数部分为,小数部分为,求的值.
二十三、解答题
23.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点.
(1)若∠DAP=40°,∠FBP=70°,则∠APB=
(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由;
(3)利用(2)的结论解答:
①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由;
②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示)
24.[感知]如图①,,求的度数.
小乐想到了以下方法,请帮忙完成推理过程.
解:(1)如图①,过点P作.
∴(_____________),
∴,
∴________(平行于同一条直线的两直线平行),
∴_____________(两直线平行,同旁内角互补),
∴,
∴,
∴,即.
[探究]如图②,,求的度数;
[应用](1)如图③,在[探究]的条件下,的平分线和的平分线交于点G,则的度数是_________º.
(2)已知直线,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接,若平分平分,且所在的直线交于点E.设,请直接写出的度数(用含的式子表示).
25.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.
(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: .
(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .
① 求∠B的度数;
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
26.在中,,,点在直线上运动(不与点、重合),点在射线上运动,且,设.
(1)如图①,当点在边上,且时,则__________,__________;
(2)如图②,当点运动到点的左侧时,其他条件不变,请猜想和的数量关系,并说明理由;
(3)当点运动到点的右侧时,其他条件不变,和还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑)
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.
【详解】
解:∠B的同旁内角有∠BAE,∠BAC和∠C,共有3个,
故选:B.
【点睛】
本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键.
2.B
【分析】
平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.
【详解】
解析:B
【分析】
平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.
【详解】
①在荡秋千的小朋友的运动,不是平移;
②坐观光电梯上升的过程,是平移;
③钟面上秒针的运动,不是平移;
④生产过程中传送带上的电视机的移动过程.是平移;
故选:B.
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.
3.C
【分析】
根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.
【详解】
解:A、在y轴上,故本选项不符合题意;
B、在第二象限,故本选项不符合题意;
C、在第四象限,故本选项符合题意;
D、在第三象限,故本选项不符合题意.
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.
4.B
【分析】
根据算术平方根的概念、平方根的概念、平行公理、平行线的性质判断即可.
【详解】
解:①,3的平方根是,故原命题错误,是假命题,不符合题意;
②是5的算术平方根,正确,是真命题,符合题意;
③经过直线外一点,有且只有一条直线与这条直线平行,故原命题错误,是假命题,不符合题意;
④两条平行直线被第三条直线所截,同旁内角互补,故原命题错误,是假命题,不符合题意.
真命题只有②,
故选:B.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
5.C
【分析】
根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.
【详解】
解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=,
∵∠AOC=∠BAE1+∠AE1C,
∴∠AE1C=﹣.
(2)如图2,过E2作AB平行线,则由AB∥CD,
可得∠1=∠BAE2=,∠2=∠DCE2=,
∴∠AE2C=+.
(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=,
∵∠BAE3=∠BOE3+∠AE3C,
∴∠AE3C=﹣.
(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,
∴∠AE4C=360°﹣﹣.
综上所述,∠AEC的度数可能是﹣,+,﹣,360°﹣﹣.
故选:C.
【点睛】
本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.
6.B
【分析】
把,再利用立方根的性质化简即可得到答案.
【详解】
解: ,
故选:
【点睛】
本题考查的是立方根的含义,立方根的性质,熟练立方根的含义与性质是解题的关键.
7.D
【分析】
根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补求出∠DFE,然后根据角平分线的定义求出∠DFH,再根据两直线平行,内错角相等解答.
【详解】
解:∵∠1=110°,
∴∠3=∠1=110°,
∵AB∥CD,
∴∠DFE=180°-∠3=180°-110°=70°,
∵HF平分∠EFD,
∴∠DFH=∠DFE=×70°=35°,
∵AB∥CD,
∴∠2=∠DFH=35°.
故选:D.
【点睛】
本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键.
8.A
【分析】
根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律.
【详解】
解:由已知,矩形周长为12,
∵甲、乙速度分别为1单位/秒,2单位/秒
则两个物体
解析:A
【分析】
根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律.
【详解】
解:由已知,矩形周长为12,
∵甲、乙速度分别为1单位/秒,2单位/秒
则两个物体每次相遇时间间隔为秒,
则两个物体相遇点依次为(-1,1)、(-1,-1)、(2,0),
∵2021=3×673+2,
∴第2021次两个物体相遇位置为(-1,-1),
故选:A.
【点睛】
本题为平面直角坐标系内的动点坐标规律探究题,解答关键是找到两个物体相遇的位置的变化规律.
二、填空题
9.16
【分析】
根据算术平方根的性质列式求出x、y的值,然后代入代数式进行计算即可求解.
【详解】
∵+=0,
∴x−8=0,y−2=0,
∴x=8,y=2,
∴xy=.
故答案为16.
【点睛】
解析:16
【分析】
根据算术平方根的性质列式求出x、y的值,然后代入代数式进行计算即可求解.
【详解】
∵+=0,
∴x−8=0,y−2=0,
∴x=8,y=2,
∴xy=.
故答案为16.
【点睛】
本题考查非负数的性质:算术平方根,解题的关键是掌握算术平方根具有双重非负性:(1)被开方数a是非负数,即a≥0;(2)算术平方根本身是非负数,即≥0.
10.【分析】
关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题.
【详解】
解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称,
∴,
解得:,
则=.
故
解析:
【分析】
关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题.
【详解】
解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称,
∴,
解得:,
则=.
故答案为:.
【点睛】
本题考查关于y轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键.
11.115°
【详解】
因为∠A=50°,
∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,
∵BE、CF分别为∠ABC与∠ACB的角平分线,
∴∠OBC=∠ABC,∠OCB=∠ACB
解析:115°
【详解】
因为∠A=50°,
∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,
∵BE、CF分别为∠ABC与∠ACB的角平分线,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB)= ×130°=65°,
在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=180°−65°=115°
12.40°
【分析】
利用平行线的性质求出∠3即可解决问题.
【详解】
解:
∵直尺的两边互相平行,
∴∠1=∠3=50°,
∵∠2+∠3=90°,
∴∠2=90°﹣∠3=40°,
故答案为:40°.
解析:40°
【分析】
利用平行线的性质求出∠3即可解决问题.
【详解】
解:
∵直尺的两边互相平行,
∴∠1=∠3=50°,
∵∠2+∠3=90°,
∴∠2=90°﹣∠3=40°,
故答案为:40°.
【点睛】
本题考查了平行线的性质,直角三角形两锐角互余等知识,解题的关键是灵活运用所学知识解决问题.
13.50°
【分析】
先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.
【详解】
解:∵AD∥BC,∠EFB=65°,
∴∠DEF=65°,
解析:50°
【分析】
先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.
【详解】
解:∵AD∥BC,∠EFB=65°,
∴∠DEF=65°,
又∵∠DEF=∠D′EF,
∴∠D′EF=65°,
∴∠AED′=50°.
故答案是:50°.
【点睛】
本题考查的是折叠的性质以及平行线的性质,用到的知识点为:两直线平行,内错角相等.
14.3; .
【分析】
由可求出,由,可分别求出,,继而可计算出结果.
【详解】
解:(1)由题意可知:,
则,
(2)由题意可知:
,,
则,,
∴,
故答案为:3;.
【点睛】
本题主
解析:3; .
【分析】
由可求出,由,可分别求出,,继而可计算出结果.
【详解】
解:(1)由题意可知:,
则,
(2)由题意可知:
,,
则,,
∴,
故答案为:3;.
【点睛】
本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.
15.(2,0)
【分析】
根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.
【详解】
解:∵点P(2m+4,3m+3)在x轴上,
∴3m+3=0,
∴m=﹣1,
∴2m+4=2,
∴点P
解析:(2,0)
【分析】
根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.
【详解】
解:∵点P(2m+4,3m+3)在x轴上,
∴3m+3=0,
∴m=﹣1,
∴2m+4=2,
∴点P的坐标为(2,0),
故答案为(2,0).
16.2023
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2
解析:2023
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2022的坐标,进而可求出点A2021与点A2022之间的距离.
【详解】
解:观察发现,第2次跳动至点的坐标是(2,1),
第4次跳动至点的坐标是(3,2),
第6次跳动至点的坐标是(4,3),
第8次跳动至点的坐标是(5,4),
…
第2n次跳动至点的坐标是(n+1,n),
则第2022次跳动至点的坐标是(1012,1011),
第2021次跳动至点的坐标是(-1011,1011).
∵点A2021与点A2022的纵坐标相等,
∴点A2021与点A2022之间的距离=1012-(-1011)=2023,
故答案为:2023.
【点睛】
本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.
三、解答题
17.(1);(2)
【分析】
(1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可;
(2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可.
【详解】
解:
解析:(1);(2)
【分析】
(1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可;
(2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可.
【详解】
解:(1)原式==;
(2)原式=.
【点睛】
本题考查了实数的混合运算,算术平方根以及立方根的求法,绝对值等知识点,题目比较基础,熟练掌握基础知识点是关键.
18.(1);(2)
【分析】
(1)先移项,然后运用直接开平方法,即可求出的值;
(2)方程两边同时除以8,然后计算立方根,即可得到答案.
【详解】
解:(1)
∴,
∴,
∴;
(2),
∴,
∴,
解析:(1);(2)
【分析】
(1)先移项,然后运用直接开平方法,即可求出的值;
(2)方程两边同时除以8,然后计算立方根,即可得到答案.
【详解】
解:(1)
∴,
∴,
∴;
(2),
∴,
∴,
∴;
【点睛】
本题考查了直接开平方法、开立方根法求方程的解,解题的关键是熟练掌握直接开平方法、开立方根法进行解题.
19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行
【分析】
运用平行线的性质定理和判定定理可得结论.
【详解】
解:(已知)
(内错角相等,两直线平
解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行
【分析】
运用平行线的性质定理和判定定理可得结论.
【详解】
解:(已知)
(内错角相等,两直线平行),
(两直线平行,同旁内角互补),
(已知),
(等式的性质),
(同旁内角互补,两直线平行),
(两直线平行,同位角相等),
(已知),
(等量代换),
(同位角相等,两直线平行).
故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行.
【点睛】
本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键.
20.(1),,;(2)见解析;(3)
【分析】
(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;
(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案;
(3)将△ABC补全为长方形
解析:(1),,;(2)见解析;(3)
【分析】
(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;
(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案;
(3)将△ABC补全为长方形,然后利用作差法求解即可.
【详解】
解:(1)平移后的三个顶点坐标分别为:,,;
(2)画出平移后三角形;
(3).
【点睛】
本题考查了平移作图的知识,解答本题的关键是根据平移的特点准确作出图形,第三问求解不规则图形面积的时候可以先补全,再减去.
21.(1)-33;(2)
【分析】
(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值;
(2)分别将a,b,c的值代入3a-b+c,可
解析:(1)-33;(2)
【分析】
(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值;
(2)分别将a,b,c的值代入3a-b+c,可解答.
【详解】
解:(1)∵某正数的两个平方根分别是3a-14和a+2,
∴(3a-14)+(a+2)=0,
∴a=3,
又∵b+11的立方根为-3,
∴b+11=(-3)3=-27,
∴b=-38,
又∵,
∴,
又∵c是的整数部分,
∴c=2;
∴a+b+c=3+(-38)+2=-33;
(2)当a=3,b=-38,c=2时,
3a-b+c=3×3-(-38)+2=49,
∴3a-b+c的平方根是±7.
【点睛】
本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.
二十二、解答题
22.(1)S=13,边长为 ;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
解析:(1)S=13,边长为 ;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
详解:解:(1)S=25-12=13, 边长为 ,
(2)a=3,b= -3 原式=9+-3-=6.
点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.
二十三、解答题
23.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.
【分析】
(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=
解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.
【分析】
(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;
(2)结论:∠APB=∠DAP+∠FBP.
(3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.
【详解】
(1)证明:过P作PM∥CD,
∴∠APM=∠DAP.(两直线平行,内错角相等),
∵CD∥EF(已知),
∴PM∥CD(平行于同一条直线的两条直线互相平行),
∴∠MPB=∠FBP.(两直线平行,内错角相等),
∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质) 即∠APB=∠DAP+∠FBP=40°+70°=110°.
(2)结论:∠APB=∠DAP+∠FBP.
理由:见(1)中证明.
(3)①结论:∠P=2∠P1;
理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,
∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,
∴∠P=2∠P1.
②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,
∵AP2、BP2分别平分∠CAP、∠EBP,
∴∠CAP2=∠CAP,∠EBP2=∠EBP,
∴∠AP2B=∠CAP+∠EBP,
= (180°-∠DAP)+ (180°-∠FBP),
=180°- (∠DAP+∠FBP),
=180°- ∠APB,
=180°- β.
【点睛】
本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.
24.[感知]见解析;[探究]70°;[应用](1)35;(2)或
【分析】
[感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;
解析:[感知]见解析;[探究]70°;[应用](1)35;(2)或
【分析】
[感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;
[探究]过点P作PM∥AB,根据AB∥CD,PM∥CD,进而根据平行线的性质即可求∠EPF的度数;
[应用](1)如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数;
(2)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解.
【详解】
解:[感知]如图①,过点P作PM∥AB,
∴∠1=∠AEP=40°(两直线平行,内错角相等)
∵AB∥CD,
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠2+∠PFD=180°(两直线平行,同旁内角互补),
∴∠PFD=130°(已知),
∴∠2=180°-130°=50°,
∴∠1+∠2=40°+50°=90°,即∠EPF=90°;
[探究]如图②,过点P作PM∥AB,
∴∠MPE=∠AEP=50°,
∵AB∥CD,
∴PM∥CD,
∴∠PFC=∠MPF=120°,
∴∠EPF=∠MPF-∠MPE=120°-50°=70°;
[应用](1)如图③所示,
∵EG是∠PEA的平分线,FG是∠PFC的平分线,
∴∠AEG=∠AEP=25°,∠GFC=∠PFC=60°,
过点G作GM∥AB,
∴∠MGE=∠AEG=25°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴GM∥CD(平行于同一条直线的两直线平行),
∴∠GFC=∠MGF=60°(两直线平行,内错角相等).
∴∠G=∠MGF-∠MGE=60°-25°=35°.
故答案为:35.
(2)当点A在点B左侧时,
如图,故点E作EF∥AB,则EF∥CD,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵平分平分,,
∴∠ABE=∠BEF=,∠CDE=∠DEF=,
∴∠BED=∠BEF+∠DEF=;
当点A在点B右侧时,
如图,故点E作EF∥AB,则EF∥CD,
∴∠DEF=∠CDE,∠ABG=∠BEF,
∵平分平分,,
∴∠DEF=∠CDE=,∠ABG=∠BEF=,
∴∠BED=∠DEF-∠BEF=;
综上:∠BED的度数为或.
【点睛】
本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.
25.(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,
解析:(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数.
②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可.
【详解】
(1)由翻折的性质可得:∠E=∠B,
∵∠BAC=90°,AE⊥BC,
∴∠DFE=90°,
∴180°-∠BAC=180°-∠DFE=90°,
即:∠B+∠C=∠E+∠FDE=90°,
∴∠C=∠FDE,
∴AC∥DE,
∴∠CAF=∠E,
∴∠CAF=∠E=∠B
故与∠B相等的角有∠CAF和∠E;
∵∠BAC=90°,AE⊥BC,
∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90°
∴∠BAF+∠CAF=∠CAF+∠C=90°
∴∠BAF=∠C
又AC∥DE,
∴∠C=∠CDE,
∴故与∠C相等的角有∠CDE、∠BAF;
(2)①∵
∴
又∵,
∴∠C=70°,∠B=20°;
②∵∠BAD=x°, ∠B=20°则,,
由翻折可知:∵, ,
∴, ,
当∠FDE=∠DFE时,, 解得:;
当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去);
当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去);
综上所述,存在这样的x的值,使得△DEF中有两个角相等.且.
【点睛】
本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.
26.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析
【分析】
(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC
解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析
【分析】
(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;
(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;
(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.
【详解】
解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.
∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,
∴∠ABC=∠ACB=40°,
∴∠ADC=∠ABC+∠BAD=40°+60°=100°.
∵∠DAC=40°,∠ADE=∠AED,
∴∠ADE=∠AED=70°,
∴∠CDE=∠ADC-∠ADE=100°-70°=30°.
故答案为60,30.
(2)∠BAD=2∠CDE,理由如下:
如图②,在△ABC中,∠BAC=100°,
∴∠ABC=∠ACB=40°.
在△ADE中,∠DAC=n,
∴∠ADE=∠AED=,
∵∠ACB=∠CDE+∠AED,
∴∠CDE=∠ACB-∠AED=40°-=,
∵∠BAC=100°,∠DAC=n,
∴∠BAD=n-100°,
∴∠BAD=2∠CDE.
(3)成立,∠BAD=2∠CDE,理由如下:
如图③,在△ABC中,∠BAC=100°,
∴∠ABC=∠ACB=40°,
∴∠ACD=140°.
在△ADE中,∠DAC=n,
∴∠ADE=∠AED=,
∵∠ACD=∠CDE+∠AED,
∴∠CDE=∠ACD-∠AED=140°-=,
∵∠BAC=100°,∠DAC=n,
∴∠BAD=100°+n,
∴∠BAD=2∠CDE.
【点睛】
本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.
展开阅读全文