1、一、解答题1问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1x2,则ABy轴,且线段AB的长度为|y1y2|;若y1y2,则ABx轴,且线段AB的长度为|x1x2|;(应用):(1)若点A(1,1)、B(2,1),则ABx轴,AB的长度为 (2)若点C(1,0),且CDy轴,且CD2,则点D的坐标为 (拓展):我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)|x1x2|+|y1y2|;例如:图1中,点M(1,1)与点N(1,2)之间的折线距离为d(M,N)|11|+|1(2)|
2、2+35解决下列问题:(1)如图1,已知E(2,0),若F(1,2),则d(E,F) ;(2)如图2,已知E(2,0),H(1,t),若d(E,H)3,则t (3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q) 2如图1,点在直线、之间,且(1)求证:;(2)若点是直线上的一点,且,平分交直线于点,若,求的度数;(3)如图3,点是直线、外一点,且满足,与交于点已知,且,则的度数为_(请直接写出答案,用含的式子表示)3如图,已知直线射线CD,P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP作,交直线AB于点F,CG平分(1)若点P,F,G都在点E
3、的右侧,求的度数;(2)若点P,F,G都在点E的右侧,求的度数;(3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由4如图,已知直线射线,是射线上一动点,过点作交射线于点,连接作,交直线于点,平分(1)若点,都在点的右侧求的度数;若,求的度数(不能使用“三角形的内角和是”直接解题)(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在请说明理由5已知直线,点P为直线、所确定的平面内的一点(1)如图1,直接写出、之间的数量关系 ;(2)如图2,写出、之间的数量关系,并证明;(3)如图3,点E在射线上,过点E作,作,点G在直线上,作的
4、平分线交于点H,若,求的度数6(1)(问题)如图1,若,求的度数;(2)(问题迁移)如图2,点在的上方,问,之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数7我们已经学习了“乘方”运算,下面介绍一种新运算,即“对数”运算定义:如果(a0,a1,N0),那么b叫做以a为底N的对数,记作例如:因为,所以;因为,所以根据“对数”运算的定义,回答下列问题:(1)填空: , (2)如果,求m的值(3)对于“对数”运算,小明同学认为有“(a0,a1,M0,N0)”,他的说法正确吗?如果正确,请给出证明过程;如果不正确,请说
5、明理由,并加以改正8阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而2于是可用来表示的小数部分.请解答下列问题:(1)的整数部分是_,小数部分是_;(2)如果的小数部分为的整数部分为求的值;(3)已知:其中是整数,且求的平方根9我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C类,例如
6、3,6,9等(1)2020属于 类(填A,B或C);(2)从A类数中任取两个数,则它们的和属于 类(填A,B或C); 从A、B类数中任取一数,则它们的和属于 类(填A,B或C); 从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A,B或C);(3)从A类数中任意取出m个数,从B类数中任意取出n个数,把它们都加起来,若最后的结果属于C类,则下列关于m,n的叙述中正确的是 (填序号)属于C类;属于A类;,属于同一类10阅读理解:计算时,若把与分别各看着一个整体,再利用分配律进行运算,可以大大简化难度过程如下:解:设为A,为B,
7、则原式=B(1+A)A(1+B)=B+ABAAB=BA=请用上面方法计算:-11阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而2于是可用来表示的小数部分.请解答下列问题:(1)的整数部分是_,小数部分是_;(2)如果的小数部分为的整数部分为求的值;(3)已知:其中是整数,且求的平方根12阅读材料:求的值解:设,将等式的两边同乘以2,得,用得,即即请仿照此法计算:(1)请直接填写的值为_;(2)求值;(3)请直接写出的值13如图,平面直角坐标系中,点的坐标是,点在轴的正半轴上,的面积等于18(1)求点的坐标;(2)如图,点从点出发,沿
8、轴正方向运动,点运动至点停止,同时点从点出发,沿轴正方向运动,点运动至点停止,点、点的速度都为每秒1个单位,设运动时间为秒,的面积为,求用含的式子表示,并直接写出的取值范围;(3)在(2)的条件下,过点作,连接并延长交于,连接交于点,若,求值及点的坐标14已知点C在射线OA上(1)如图,CDOE,若AOB90,OCD120,求BOE的度数;(2)在中,将射线OE沿射线OB平移得OE(如图),若AOB,探究OCD与BOE的关系(用含的代数式表示)(3)在中,过点O作OB的垂线,与OCD的平分线交于点P(如图),若CPO90,探究AOB与BOE的关系15如图,在平面直角坐标系中,已知,将线段平移至
9、,点在轴正半轴上,且连接,(1)写出点的坐标为 ;点的坐标为 ;(2)当的面积是的面积的3倍时,求点的坐标;(3)设,判断、之间的数量关系,并说明理由16在平面直角坐标系中,对于任意两点,如果,则称与互为“距点”例如:点,点,由,可得点与互为“距点”(1)在点,中,原点的“距点”是_(填字母);(2)已知点,点,过点作平行于轴的直线当时,直线上点的“距点”的坐标为_;若直线上存在点的“点”,求的取值范围(3)已知点,的半径为,若在线段上存在点,在上存在点,使得点与点互为“距点”,直接写出的取值范围17对于平面直角坐标系xOy中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y
10、)平移到P(x+t,yt)称为将点P进行“t型平移”,点P称为将点P进行“t型平移”的对应点;将图形G上的所有点进行“t型平移”称为将图形G进行“t型平移”例如,将点P(x,y)平移到P(x+1,y1)称为将点P进行“l型平移”,将点P(x,y)平移到P(x1,y+1)称为将点P进行“l型平移”已知点A (2,1)和点B (4,1)(1)将点A (2,1)进行“l型平移”后的对应点A的坐标为 (2)将线段AB进行“l型平移”后得到线段AB,点P1(1.5,2),P2(2,3),P3(3,0)中,在线段AB上的点是 若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是 (3)已知点C
11、(6,1),D (8,1),点M是线段CD上的一个动点,将点B进行“t型平移”后得到的对应点为B,当t的取值范围是 时,BM的最小值保持不变18如图,在平面直角坐标系xOy中,对于任意两点A(x1,y1)与B(x2,y2)的“非常距离”,给出如下定义:若|x1x2|y1y2|,则点A与点B的“非常距离”为|x1x2|;若|x1x2|y1y2|,则点A与点B的“非常距离”为|y1y2|(1)填空:已知点A(3,6)与点B(5,2),则点A与点B的“非常距离”为 ;(2)已知点C(1,2),点D为y轴上的一个动点若点C与点D的“非常距离”为2,求点D的坐标;直接写出点C与点D的“非常距离”的最小值
12、19学校将20年入学的学生按入学年份、年级、班级、班内序号的顺序给每一位学生编号,如2015年入学的8年级3班的46号学生的编号为15080346张山同学模仿二维码的方式给学生编号设计了一套身份识别系统,在55的正方形风格中,黑色正方形表示数字1,白色正方形表示数字0 我们把从上往下数第i行、从左往右数第j列表示的数记为aij,(其中,i、j1,2,3,4,5),规定Ai16ai18ai24ai32ai4ai5(1)若A1表示入学年份,A2表示所在年级,A3表示所在班级,A4表示编号的十位数字,A5表示编号的个位数字图1是张山同学的身份识别图案,请直接写出张山同学的编号;请在图2中画出2018
13、年入学的9年级5班的39号同学的身份识别图案;(2)张山同学又设计了一套信息加密系统,其中A1表示入学年份加8,A2表示所在年级的数减6再加上所在班级的数,A3表示所在年级的数乘2后减3再减所在班级的数,将编号(班内序号)的末两位单列出来,作为一个两位数,个位与十位数字对换后再加2,所得结果的十位数字用A4表示、个位数字用A5表示例如:2018年9年级5班的39号同学,其加密后的身份识别图案中,A118826,A29658,A3923510,93295,所以A49,A55,所以其加密后的身份识别(26081095)图案如图3所示图4是李思同学加密后的身份识别图案,请求出李思同学的编号20五一节
14、前,某商店拟购进A、B两种品牌的电风扇进行销售,已知购进3台A种品牌电风扇所需费用与购进2台B种品牌电风扇所需费用相同,购进1台A种品牌电风扇与2台B种品牌电风扇共需费用400元(1)求A、B两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A种品牌电风扇定价为180元/台,B种品牌电风扇定价为250元/台,商店拟用1000元购进这两种风扇(1000元刚好全部用完),为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?21一列快车长70米,慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车,所用时间为20秒若两车相向而行,则两车从相遇到离开时间为4秒,求两车每
15、秒钟各行多少米?22阅读下列材料,解答下面的问题:我们知道方程有无数个解,但在实际生活中我们往往只需求出其正整数解例:由,得:,(x、y为正整数),则有又为正整数,则为正整数由2与3互质,可知:x为3的倍数,从而x=3,代入2x+3y=12的正整数解为问题:(1)请你写出方程的一组正整数解:.(2)若为自然数,则满足条件的x值为.(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?23已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时
16、租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元次,B型车每辆需租金240元次,请选出最省钱的租车方案,并求出最少租车费24学校计划为“我和我的祖国”演讲比赛购买奖品已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的请设计出最省钱的购买方案,并说明理由25某小区准备新建个停车位,以解决小区停车
17、难的问题已知新建个地上停车位和个地下停车位共需万元:新建个地上停车位和个地下停车位共需万元,(1)该小区新建个地上停车位和个地下停车位各需多少万元?(2)若该小区新建车位的投资金额超过万元而不超过万元,问共有几种建造方案?(3)对(2)中的几种建造方案中,哪种方案的投资最少?并求出最少投资金额.26阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解,则方程ax+by=c的全部整数解可表示为(t为整数)问题:求方程7x+19y=213的所有正整数解小明参考阅读材料,解决该问题如下:解:该方程一组整数解为,则全部整数解可表示为(t为整数)因为解得因为t为整数,所以t=0或-1所以该方程的
18、正整数解为和 (1)方程3x-5y=11的全部整数解表示为:(t为整数),则= ;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组? 请直接写出答案27某体育拓展中心的门票每张10元,一次性使用考虑到人们的不同需求,也为了吸引更多的顾客,该拓展中心除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法年票分A、B两类:A类年票每张120元,持票者可不限次进入中心,且无需再购买门票;B类年票每张60元,持票者进入中心时,需再购买门票,每次2元(1)小丽计划在一年中花费80元在该
19、中心的门票上,如果只能选择一种购买门票的方式,她怎样购票比较合算?(2)小亮每年进入该中心的次数约20次,他采取哪种购票方式比较合算?(3)小明根据自己进入拓展中心的次数,购买了A类年票,请问他一年中进入该中心不低于多少次?28我们把关于x的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”(1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由;(2)若关于x的组合是“有缘组合”,求a的取值范围;(3)若关于x的组合是“无缘组
20、合”;求a的取值范围29若关于x的方程ax+b0(a0)的解与关于y的方程cy+d0(c0)的解满足1xy1,则称方程ax+b0(a0)与方程cy+d0(c0)是“友好方程”例如:方程2x10的解是x0.5,方程y10的解是y1,因为1xy1,方程2x10与方程y10是“友好方程”(1)请通过计算判断方程2x95x2与方程5(y1)2(1y)342y是不是“友好方程”(2)若关于x的方程3x3+4(x1)0与关于y的方程+y2k+1是“友好方程”,请你求出k的最大值和最小值30如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足
21、关系式:|a+3|+(b-a+1)2=0.(1)a=_,b=_,BCD的面积为_;(2)如图2,若ACBC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当CPQ=CQP时,求证:BP平分ABC;(3)如图3,若ACBC,点E是点A与点B之间一动点,连接CE,CB始终平分ECF,当点E在点A与点B之间运动时,的值是否变化?若不变,求出其值;若变化,请说明理由. 【参考答案】*试卷处理标记,请不要删除一、解答题1【应用】:(1)3;(2)(1,2)或(1,2);【拓展】:(1)5;(2)2或2;(3)4或8【分析】(应用)(1)根据若y1y2,则ABx轴,且线段AB的长度为|x1x2|,代
22、入数据即可得出结论;(2)由CDy轴,可设点D的坐标为(1,m),根据CD2,可得|0m|2,故可求出m,即可求解;(拓展)(1)根据两点之间的折线距离公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d(E,H)3,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q在x轴上,可设点Q的坐标为(x,0),根据三角形的面积公式结合三角形OPQ的面积为3即可求出x的值,再利用两点之间的折线距离公式即可得出结论;【详解】(应用):(1)AB的长度为|12|3故答案为:3(2)由CDy轴,可设点D的坐标为(1,m),CD2,|0m|2,解得:m2,点D的坐标为(1
23、,2)或(1,2)故答案为:(1,2)或(1,2)(拓展):(1)d(E,F)|2(1)|+|0(2)|5故答案为:5(2)E(2,0),H(1,t),d(E,H)3,|21|+|0t|3,解得:t2故答案为:2或2(3)由点Q在x轴上,可设点Q的坐标为(x,0),三角形OPQ的面积为3,|x|33,解得:x2当点Q的坐标为(2,0)时,d(P,Q)|32|+|30|4;当点Q的坐标为(2,0)时,d(P,Q)|3(2)|+|30|8故答案为:4或8【点睛】本题是三角形综合题目,考查了新定义、两点间的距离公式、三角形面积等知识,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键
24、2(1)见解析;(2)10;(3)【分析】(1)过点E作EFCD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E作HECD,设 由(1)得ABCD,则ABCDHE,由平行线的性质,得出再由平分,得出则,则可列出关于x和y的方程,即可求得x,即的度数;(3)过点N作NPCD,过点M作QMCD,由(1)得ABCD,则NPCDABQM,根据和,得出根据CDPNQM,DENB,得出即根据NPAB,得出再由,得出由ABQM,得出因为,代入的式子即可求出【详解】(1)过点E作EFCD,如图,EFCD, , EFAB,CDAB;(2)过点E作HECD,如图,设 由(1
25、)得ABCD,则ABCDHE,又平分,即解得:即;(3)过点N作NPCD,过点M作QMCD,如图,由(1)得ABCD,则NPCDABQM,NPCD,CDQM,,又, , 又PNAB, , 又ABQM, 【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系3(1)40;(2)65;(3)存在,56或20【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=25,再根据PQCE,即可得出CPQ=ECP=65;(3)设EGC
26、=4x,EFC=3x,则GCF=4x-3x=x,分两种情况讨论:当点G、F在点E的右侧时,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)CEB=100,ABCD,ECQ=80,PCF=PCQ,CG平分ECF,PCGPCF+FCGQCF+FCE=ECQ=40;(2)ABCDQCG=EGC,QCG+ECG=ECQ=80,EGC+ECG=80,又EGC-ECG=30,EGC=55,ECG=25,ECG=GCF=25,PCF=PCQ=(80-50)=15,PQCE,CPQ=ECP=65;(3)设EGC=4x,EFC=3x,则GCF=FCD=4x-3x=x,当点G、F在点E的右侧
27、时,则ECG=x,PCF=PCD=x,ECD=80,x+x+x+x=80,解得x=16,CPQ=ECP=x+x+x=56;当点G、F在点E的左侧时,则ECG=GCF=x,CGF=180-4x,GCQ=80+x,180-4x=80+x,解得x=20,FCQ=ECF+ECQ=40+80=120,PCQFCQ60,CPQ=ECP=80-60=20【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等4(1)35;(2)55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG
28、=GCF=20,再根据PQCE,即可得出CPQ=ECP=60;(2)设EGC=3x,EFC=2x,则GCF=3x-2x=x,分两种情况讨论:当点G、F在点E的右侧时,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)ABCD,CEB+ECQ=180,CEB=110,ECQ=70,PCF=PCQ,CG平分ECF,PCGPCF+FCGQCF+FCEECQ35;ABCD,QCG=EGC,QCG+ECG=ECQ=70,EGC+ECG=70,又EGC-ECG=30,EGC=50,ECG=20,ECG=GCF=20,PCFPCQ(7040)15,PQCE,CPQ=ECP=ECQ-PCQ
29、=70-15=55(2)52.5或7.5,设EGC=3x,EFC=2x,当点G、F在点E的右侧时,ABCD,QCG=EGC=3x,QCF=EFC=2x,则GCF=QCG-QCF=3x-2x=x,PCFPCQFCQEFCx,则ECG=GCF=PCF=PCD=x,ECD=70,4x=70,解得x=17.5,CPQ=3x=52.5;当点G、F在点E的左侧时,反向延长CD到H,EGC=3x,EFC=2x,GCH=EGC=3x,FCH=EFC=2x,ECG=GCF=GCH-FCH=x,CGF=180-3x,GCQ=70+x,180-3x=70+x,解得x=27.5,FCQ=ECF+ECQ=27.52+7
30、0=125,PCQFCQ62.5,CPQ=ECP=62.5-55=7.5,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键5(1)A+C+APC=360;(2)见解析;(3)55【分析】(1)首先过点P作PQAB,则易得ABPQCD,然后由两直线平行,同旁内角互补,即可证得A+C+APC=360;(2)作PQAB,易得ABPQCD,根据两直线平行,内错角相等,即可证得APC=A+C;(3)由(2)知,APC=PAB-PCD,先证BEF=PQB=110、PEG=FEG,GEH=BEG,根据PEH=PEG-GEH可得答案【详解】解:(1)A+C+
31、APC=360如图1所示,过点P作PQAB,A+APQ=180,ABCD,PQCD,C+CPQ=180,A+APQ+C+CPQ=360,即A+C+APC=360;(2)APC=A+C,如图2,作PQAB,A=APQ,ABCD,PQCD,C=CPQ,APC=APQ-CPQ,APC=A-C;(3)由(2)知,APC=PAB-PCD,APC=30,PAB=140,PCD=110,ABCD,PQB=PCD=110,EFBC,BEF=PQB=110,EFBC,BEF=PQB=110,PEG=PEF,PEG=FEG,EH平分BEG,GEH=BEG,PEH=PEG-GEH=FEG-BEG=BEF=55【点睛
32、】此题考查了平行线的性质以及角平分线的定义此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用6(1)90;(2)PFC=PEA+P;(3)G=【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PNAB,则PNCD,可得FPN=PEA+FPE,进而可得PFC=PEA+FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得GEF+GFEPEA+PFC+OEF+OFE,由(2)得PEA=PFC-,由OFE+OEF=180-FOE=180-PFC可求解【详解】解:(1)如图1,过点P作PMAB,1=AEP又AEP=40,1=40ABCD, PMCD, 2
33、+PFD=180PFD=130,2=180-130=501+2=40+50=90即EPF=90(2)PFC=PEA+P理由:过P点作PNAB,则PNCD,PEA=NPE,FPN=NPE+FPE,FPN=PEA+FPE,PNCD,FPN=PFC,PFC=PEA+FPE,即PFC=PEA+P;(3)令AB与PF交点为O,连接EF,如图3在GFE中,G=180-(GFE+GEF),GEFPEA+OEF,GFEPFC+OFE,GEF+GFEPEA+PFC+OEF+OFE,由(2)知PFC=PEA+P,PEA=PFC-,OFE+OEF=180-FOE=180-PFC,GEF+GFE(PFC)+PFC+1
34、80PFC180,G180(GEF+GFE)180180+【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键7(1)1,4;(2)m=10 ;(3)不正确,改正见解析.【解析】试题分析:(1)根据新定义由61=6、34=81可得log66=1,log381=4;(2)根据定义知m2=23,解之可得;(3)设ax=M,ay=N,则logaM=x、logaN=y,根据axay=ax+y知ax+y=MN,继而得logaMN=x+y,据此即可得证试题解析:解:(1)61=6,34=81,log66=1,log381=4故答案为:1,4;(2)log2(m2)=3,m2=23
35、,解得:m=10;(3)不正确,设ax=M,ay=N,则logaM=x,logaN=y(a0,a1,M、N均为正数)axay=,=MN,logaMN=x+y,即logaMN=logaM+logaN点睛:本题考查了有理数和整式的混合运算,解题的关键是明确题意,可以利用新定义进行解答问题8(1) 4,-4;(2)1;(2) 12【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可;(3)先估算出的范围,求出x、y的值,再代入求出即可【详解】解:(1)45,的整数部分是4,小数部分是-4,故答案为4,-4;(2)23,a=-2,34,b=3,a+b-=-
36、2+3-=1;(3)100110121,1011,110100+111,100+=x+y,其中x是整数,且0y1,x=110,y=100+-110=-10,x+24-y=110+24-+10=144,x+24-y的平方根是12【点睛】本题考查了估算无理数的大小,能估算出、的范围是解此题的关键9(1)A;(2)B;C;B;(3)【分析】(1)计算,结合计算结果即可进行判断;(2)从A类数中任取两个数进行计算,即可求解;从A、B两类数中任取两个数进行计算,即可求解;根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案;(
37、3)根据m,n的余数之和,举例,观察即可判断【详解】解:(1)根据题意,2020被3除余数为1,属于A类;故答案为:A(2)从A类数中任取两个数,如:(1+4)3=12,(4+7)3=32,两个A类数的和被3除余数为2,则它们的和属于B类;从A、B类数中任取一数,与同理,如:(1+2)3=1,(1+5)3=2,(4+5)3=3,从A、B类数中任取一数,则它们的和属于C类;从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则,余数为2,属于B类;故答案为:B;C;B(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m1+n2=m
38、+2n,最后的结果属于C类,m+2n能被3整除,即m+2n属于C类,正确;若m=1,n=1,则|mn|=0,不属于B类,错误;观察可发现若m+2n属于C类,m,n必须是同一类,正确;综上,正确故答案为:【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答10(1);(2).【分析】根据发现的规律得出结果即可;根据发现的规律将所求式子变形,约分即可得到结果【详解】(1)设为A,为B,原式=(1+A)B(1+B)A=B+ABAAB=BA=;(2)设为A,为B,原式=(1+A)B(1+B)A=B+ABAAB=BA=【点睛】考查了有理数的混合运算,熟练掌握运算法则是解本题的
39、关键11(1) 4,-4;(2)1;(2) 12【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可;(3)先估算出的范围,求出x、y的值,再代入求出即可【详解】解:(1)45,的整数部分是4,小数部分是-4,故答案为4,-4;(2)23,a=-2,34,b=3,a+b-=-2+3-=1;(3)100110121,1011,110100+111,100+=x+y,其中x是整数,且0y1,x=110,y=100+-110=-10,x+24-y=110+24-+10=144,x+24-y的平方根是12【点睛】本题考查了估算无理数的大小,能估算出、的范围
40、是解此题的关键12(1)15;(2);(3)【分析】(1)先计算乘方,即可求出答案;(2)根据题目中的运算法则进行计算,即可求出答案;(3)根据题目中的运算法则进行计算,即可求出答案;【详解】解:(1);故答案为:15;(2)设,把等式两边同时乘以5,得,由,得:,;(3)设,把等式乘以10,得:,把+,得:,【点睛】本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键13(1);(2)();(3)的值为4,点的坐标是【分析】(1)根据AOB的面积可求得OA的长,即可求得点A的坐标;(2)由题意可分别得,由三角形面积公式即可得结果,由点Q只在线段OB上运动,从而可得t的取值范围;(3)利用割补方法,由则可求得t的值;连接OE,由可求得OF的长,从而求得点F的坐标【详解】(1)B(-6,0),OB=6,OA=6 ,(2),()(3),解得,则,连接,如图,点坐标为综上所述:的值为4,点的坐标是【点睛】本题考查了代数式,三角形面积,用到了割补方法,也是本题的关键和难点14(1)150;(2)OCD+BOE=360-;(3)AOB=BOE【分析】(1)先根据平行线的性质得到AOE的度数,再根据直角、周角的定义即可求得BOE的度数;(2)如图,过O点作OFCD,根据平行线的判定和性质可得OCD、BOE的数量关系;(3)由已知推出CPOB,得到AO