收藏 分销(赏)

七年级数学下册期末几何压轴题试题(带答案).doc

上传人:丰**** 文档编号:4880821 上传时间:2024-10-17 格式:DOC 页数:46 大小:2.90MB
下载 相关 举报
七年级数学下册期末几何压轴题试题(带答案).doc_第1页
第1页 / 共46页
七年级数学下册期末几何压轴题试题(带答案).doc_第2页
第2页 / 共46页
七年级数学下册期末几何压轴题试题(带答案).doc_第3页
第3页 / 共46页
七年级数学下册期末几何压轴题试题(带答案).doc_第4页
第4页 / 共46页
七年级数学下册期末几何压轴题试题(带答案).doc_第5页
第5页 / 共46页
点击查看更多>>
资源描述

1、一、解答题1如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2cm/s的速度沿ABCE运动,最终到达点E设点P运动的时间为t秒(1)请以A点为原点,AB所在直线为x轴,1cm为单位长度,建立一个平面直角坐标系,并用t表示出点P在不同线段上的坐标(2)在(1)相同条件得到的结论下,是否存在P点使APE的面积等于20cm2时,若存在,请求出P点坐标;若不存在,请说明理由2已知ABCD,ABE与CDE的角分线相交于点F(1)如图1,若BM、DM分别是ABF和CDF的角平分线,且BED100,求M的度数;(2)如图2,若ABMABF,CD

2、MCDF,BED,求M的度数;(3)若ABMABF,CDMCDF,请直接写出M与BED之间的数量关系3已知,点为平面内一点,于(1)如图1,求证:;(2)如图2,过点作的延长线于点,求证:;(3)如图3,在(2)问的条件下,点、在上,连接、,且平分,平分,若,求的度数4已知:如图(1)直线AB、CD被直线MN所截,12(1)求证:AB/CD;(2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分BPE,QF平分EQD,则PEQ和PFQ之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P点作PH/EQ交CD于点H,连

3、接PQ,若PQ平分EPH,QPF:EQF1:5,求PHQ的度数5如图1,已知直线mn,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即OPA=QPB(1)如图1,若OPQ=82,求OPA的度数;(2)如图2,若AOP=43,BQP=49,求OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 OPQROP试判断OPQ和ORQ的数

4、量关系,并说明理由6已知,(1)如图1,求证:;(2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数7规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(3,27)=_,(5,1)=_,(2, )=_(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4)请你尝试运用上述这种方法说明下面这个等式成

5、立的理由:(4,5)+(4,6)=(4,30)8观察下列各式,并用所得出的规律解决问题:(1),由此可见,被开方数的小数点每向右移动_位,其算术平方根的小数点向_移动_位(2)已知,则_;_(3),小数点的变化规律是_(4)已知,则_9对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K(n),例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为,所以(1)计算:和;(2)若

6、x是“梦幻数”,说明:等于x的各数位上的数字之和;(3)若x,y都是“梦幻数”,且,猜想:_,并说明你猜想的正确性10阅读下面的文字,解答问题对于实数a,我们规定:用符号a表示不大于a的最大整数;用a表示a减去a所得的差例如:1,2.22,1,2.22.220.2(1)仿照以上方法计算: 5 ;(2)若1,写出所有满足题意的整数x的值: (3)已知y0是一个不大于280的非负数,且满足0我们规定:y1,y2,y3,以此类推,直到yn第一次等于1时停止计算当y0是符合条件的所有数中的最大数时,此时y0 ,n 11阅读材料:求值:,解答:设,将等式两边同时乘2得:,将得:,即请你类比此方法计算:其

7、中n为正整数12对于有理数、,定义了一种新运算“”为:如:,(1)计算:_;_;(2)若是关于的一元一次方程,且方程的解为,求的值;(3)若,且,求的值13已知A(0,a)、B(b,0),且+(b4)20(1)直接写出点A、B的坐标;(2)点C为x轴负半轴上一点满足SABC15如图1,平移直线AB经过点C,交y轴于点E,求点E的坐标;如图2,若点F(m,10)满足SACF10,求m(3)如图3,D为x轴上B点右侧的点,把点A沿y轴负半轴方向平移,过点A作x轴的平行线l,在直线l上取两点G、H(点H在点G右侧),满足HB8,GD6当点A平移到某一位置时,四边形BDHG的面积有最大值,直接写出面积

8、的最大值14如图1,/,点、分别在、上,点在直线、之间,且(1)求的值;(2)如图2,直线分别交、的角平分线于点、,直接写出的值;(3)如图3,在内,;在内,直线分别交、分别于点、,且,直接写出的值15如图,在平面直角坐标系中,同时将点A(1,0)、B(3,0)向上平移2个单位长度再向右平移1个单位长度,分别得到A、B的对应点C、D连接AC,BD(1)求点C、D的坐标,并描出A、B、C、D点,求四边形ABDC面积;(2)在坐标轴上是否存在点P,连接PA、PC使SPACS四边形ABCD?若存在,求点P坐标;若不存在,请说明理由16已知关于x、y的二元一次方程(1)若方程组的解x、y满足,求a的取

9、值范围;(2)求代数式的值17如图,在平面直角坐标系中,O为坐标原点,点,其中满足,D为直线AB与轴的交点,C为线段AB上一点,其纵坐标为.(1)求的值;(2)当为何值时,和面积的相等;(3)若点C坐标为(-2,1),点M(m,-3)在第三象限内,满足,求m的取值范围.(注:表示的面积)18如图1,在直角坐标系中直线与、轴的交点分别为,且满足.(1)求、的值;(2)若点的坐标为且,求的值;(3)如图2,点坐标是,若以2个单位/秒的速度向下平移,同时点以1个单位/秒的速度向左平移,平移时间是秒,若点落在内部(不包含三角形的边),求的取值范围19某企业用规格是170cm40cm的标准板材作为原材料

10、,按照图所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm)(1)求图中a、b的值;(2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计)一共可裁剪出甲型板材张,乙型板材张; 恰好一共可以做出竖式和横式两种无盖装饰盒子多少个?20历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示例如f(x)x23x5,把x某数时多项式的值用f(某数)来表示例如x1时多项式x23x5的值记为f(1)(1)23(1)57.(1)已知g(x)2x23x1,分别求出g(1)和g(

11、2);(2)已知h(x)ax32x2ax6,当h()a,求a的值;(3)已知f(x)2(a,b为常数),当k无论为何值,总有f(1)0,求a,b的值21如图,已知,且满足.(1)求、两点的坐标;(2)点在线段上,、满足,点在轴负半轴上,连交轴的负半轴于点,且,求点的坐标;(3)平移直线,交轴正半轴于,交轴于,为直线上第三象限内的点,过作轴于,若,且,求点的坐标.22在平面直角坐标系中,把线段先向右平移h个单位,再向下平移1个单位得到线段(点A对应点C),其中分别是第三象限与第二象限内的点(1)若,求C点的坐标;(2)若,连接,过点B作的垂线l判断直线l与x轴的位置关系,并说明理由;已知E是直线

12、l上一点,连接,且的最小值为1,若点B,D及点都是关于x,y的二元一次方程的解为坐标的点,试判断是正数负数还是0?并说明理由23如图,在平面直角坐标系中,已知,点,满足,(1)直接写出点,的坐标及的面积;(2)如图2,过点作直线,已知是上的一点,且,求的取值范围;(3)如图3,是线段上一点,求,之间的关系;点为点关于轴的对称点,已知,求点的坐标24定义一种新运算“ab”:当ab时,ab2a+b;当ab时,ab2ab例如:3(4)23+(4)2,(6)122(6)1224(1)填空:(2)3 ;(2)若(3x4)(2x+3)2(3x4)+(2x+3),则x的取值范围为 ;(3)已知(2x6)(9

13、3x)7,求x的取值范围;(4)小明在计算(2x22x+4)(x2+4x6)时随意取了一个x的值进行计算,得出结果是0,小丽判断小明计算错了,小丽是如何判断的?请说明理由25阅读材料:形如的不等式,我们就称之为双连不等式.求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得,然后同时除以2,得解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式;(3)已知,求的整数值26某体育拓展中心的门票每张10元,一次性使用考虑到人们的不同需求,也为了吸引更多的顾客,该拓展中心除保留原来的售票方法

14、外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法年票分A、B两类:A类年票每张120元,持票者可不限次进入中心,且无需再购买门票;B类年票每张60元,持票者进入中心时,需再购买门票,每次2元(1)小丽计划在一年中花费80元在该中心的门票上,如果只能选择一种购买门票的方式,她怎样购票比较合算?(2)小亮每年进入该中心的次数约20次,他采取哪种购票方式比较合算?(3)小明根据自己进入拓展中心的次数,购买了A类年票,请问他一年中进入该中心不低于多少次?27材料1:我们把形如(、为常数)的方程叫二元一次方程若、为整数,则称二元一次方程为整系数方程若是,的最大公约数的

15、整倍数,则方程有整数解例如方程都有整数解;反过来也成立方程都没有整数解,因为6,3的最大公约数是3,而10不是3的整倍数;4,2的最大公约数是2,而1不是2的整倍数材料2:求方程的正整数解解:由已知得: 设(为整数),则 把代入得:所以方程组的解为 , 根据题意得:解不等式组得0所以的整数解是1,2,3所以方程的正整数解是:,根据以上材料回答下列问题:(1)下列方程中: , , , , , 没有整数解的方程是 (填方程前面的编号);(2)仿照上面的方法,求方程的正整数解;(3)若要把一根长30的钢丝截成2长和3长两种规格的钢丝(两种规格都要有),问怎样截才不浪费材料?你有几种不同的截法?(直接

16、写出截法,不要求解题过程)28我们把关于x的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”(1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由;(2)若关于x的组合是“有缘组合”,求a的取值范围;(3)若关于x的组合是“无缘组合”;求a的取值范围29如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过C作轴于B,(1)求a,b的值;(2)在y轴上是否存在点P,使得ABC和OCP的面积相等,若存在,求出点P坐

17、标,若不存在,试说明理由.(3)若过B作BDAC交y轴于D,且AE,DE分别平分CAB,ODB,如图2,图3, 求:CABODB的度数; 求:AED的度数.30某生态柑橘园现有柑橘21吨,计划租用A,B两种型号的货车将柑橘运往外地销售已知满载时,用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨(1)1辆A型车和1辆B型车满载时一次分别运柑橘多少吨?(2)若计划租用A型货车m辆,B型货车n辆,一次运完全部柑橘,且每辆车均为满载请帮柑橘园设计租车方案;若A型车每辆需租金120元/次,B型车每辆需租金100元/次请选出最省钱的租车方案,并求出最少租车费【参考答案

18、】*试卷处理标记,请不要删除一、解答题1(1)建立直角坐标系见解析,当0t4时,即当点P在线段AB上时,其坐标为:P(2t,0),当4t7时,即当点P在线段BC上时,其坐标为:P(8,2t8),当7t10时,即当点P在线段CE上时,其坐标为:P(222t,6);(2)存在,当点P的坐标分别为:P(,0)或 P(8,4)时,APE的面积等于【分析】(1)建立平面直角坐标系,根据点P的运动速度分别求出点P在线段AB,BC,CE上的坐标;(2)根据(1)中得到的点P的坐标以及,分别列出三个方程并解出此时t的值再进行讨论【详解】(1)正确画出直角坐标系如下:当0t4时,点P在线段AB上,此时P点的横坐

19、标为,其纵坐标为0;此时P点的坐标为:P(2t,0);同理:当4t7时,点P在线段BC上,此时P点的坐标为:P(8,2t8);当7t10时,点P在线段CE上,此时P点的坐标为:P(222t,6)(2)存在,如图1,当0t4时,点P在线段AB上,解得:t(s);P点的坐标为:P(,0)如图2,当4t7时,点P在线段BC上,; 解得:t=6(s);点P的坐标为:P(8,4)如图3,当7t10时,点P在线段CE上,;解得:t(s);7,t(应舍去),综上所述:当P点的坐标为:P(,0)或 P(8,4)时,APE的面积等于【点睛】本题考查了三角形的面积的计算公式,在本题计算的过程中根据动点的坐标正确地

20、求出三角形的底边长度和高是解题的关键2(1)65;(2);(3)2nM+BED=360【分析】(1)首先作EGAB,FHAB,连结MF,利用平行线的性质可得ABE+CDE=260,再利用角平分线的定义得到ABF+CDF=130,从而得到BFD的度数,再根据角平分线的定义和三角形外角的性质可求M的度数;(2)先由已知得到ABE=6ABM,CDE=6CDM,由(1)得ABE+CDE=360-BED,M=ABM+CDM,等量代换即可求解;(3)由(2)的方法可得到2nM+BED=360【详解】解:(1)如图1,作,连结,和的角平分线相交于,、分别是和的角平分线,;(2)如图1,与两个角的角平分线相交

21、于点,;(3)由(2)结论可得,则【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质3(1)见解析;(2)见解析;(3)【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可;(3)设DBE=a,则BFC=3a,根据角平分线的定义可得ABD=C=2a,FBC=DBC=a+45,根据三角形内角和可得BFC+FBC+BCF=180,可得AFC=BCF的度数表达式,再根据平行的性质可得AFC+NCF=180,代入即可算出a的度数,进而完成解答【详解】(1)证明:,于,;(2

22、)证明:过作,又,;(3)设DBE=a,则BFC=3a,BE平分ABD,ABD=C=2a,又ABBC,BF平分DBC,DBC=ABD+ABC=2a+90,即:FBC=DBC=a+45又BFC+FBC+BCF=180,即:3a+a+45+BCF=180BCF=135-4a,AFC=BCF=135-4a,又AM/CN,AFC+ NCF=180,即:AFC+BCN+BCF=180,135-4a+135-4a+2a=180,解得a=15,ABE=15,EBC=ABE+ABC=15+90=105【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的

23、关键4(1)见解析;(2)PEQ+2PFQ360;(3)30【分析】(1)首先证明13,易证得AB/CD;(2)如图2中,PEQ+2PFQ360作EH/AB理由平行线的性质即可证明;(3)如图3中,设QPFy,PHQxEPQz,则EQFFQH5y,想办法构建方程即可解决问题;【详解】(1)如图1中,23,12,13,AB/CD(2)结论:如图2中,PEQ+2PFQ360理由:作EH/ABAB/CD,EH/AB,EH/CD,12,34,2+31+4,PEQ1+4,同法可证:PFQBPF+FQD,BPE2BPF,EQD2FQD,1+BPE180,4+EQD180,1+4+EQD+BPE2180,即

24、PEQ+2(FQD+BPF)=360,PEQ+2PFQ360(3)如图3中,设QPFy,PHQxEPQz,则EQFFQH5y,EQ/PH,EQCPHQx,x+10y180,AB/CD,BPHPHQx,PF平分BPE,EPQ+FPQFPH+BPH,FPHy+zx,PQ平分EPH,Zy+y+zx,x2y,12y180,y15,x30,PHQ30【点睛】本题考查了平行线的判定与性质,角平分线的定义等知识(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键5(1)49,(2)44,(3)OPQ=ORQ【分析】(1)根据OPA=QPB可求出OPA的度数;(2)

25、由AOP=43,BQP=49可求出OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:OPQ=AOP+BQP,ORQ=DOR+RQC,从而OPQ=ORQ【详解】解:(1)OPA=QPB,OPQ=82,OPA=(180-OPQ)=(180-82)=49,(2)作PCm,mn,mPCn,AOP=OPC=43,BQP=QPC=49,OPQ=OPC+QPC=43+49=92,OPA=(180-OPQ)=(180-92)44,(3)OPQ=ORQ理由如下:由(2)可知:OPQ=AOP+BQP,ORQ=DOR+RQC,入射光线与平面镜的夹角等于反射光线与平面镜的夹角,AOP=DOR,BQP=RQ

26、C,OPQ=ORQ【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的6(1)见解析;(2)【分析】(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案【详解】(1)证明:;(2)过点E作,延长DC至Q,过点M作,AF平分FH平分设,【点睛】本题考查了平行线的判定及性质,角平分

27、线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键7(1)3,0,-2 (2) (4,30)【解析】分析:(1)根据阅读材料,应用规定的运算方式计算即可;(2)应用规定和同底数幂相乘的性质逆用变形计算即可.详解:(1)33=27(3,27)=350=1(5,1)=12-2= (2,)=-2(2)设(4,5)=x,(4,6)=y则,=6(4,30)=x+y (4,5)+(4,6)=(4,30) 点睛:此题是一个规定计算的应用型的题目,关键是灵活应用规定的关系式计算,熟练记忆幂的相关性质.8(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根

28、的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果【详解】解:(1),由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位故答案为:两;右;一;(2)已知,则;故答案为:12.25;0.3873;(3),小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4),y=-0.01【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键9(1);(2)见解析;(3)【分析

29、】(1)根据的定义,可以直接计算得出;(2)设,得到新的三个数分别是:,这三个新三位数的和为,可以得到:;(3)根据(2)中的结论,猜想:【详解】解:(1)已知,所以新的三个数分别是:,这三个新三位数的和为,;同样,所以新的三个数分别是:,这三个新三位数的和为,(2)设,得到新的三个数分别是:,这三个新三位数的和为,可得到:,即等于x的各数位上的数字之和(3)设,由(2)的结论可以得到:,根据三位数的特点,可知必然有:,故答案是:【点睛】此题考查了多位数的数字特征,每个数字是10以内的自然数且不为0,解题的关键是:结合新定义,可以计算出问题的解,注意把握每个数字都会出现一次的特点,区别数字与多

30、为数的不同10(1)2;3;(2)1、2、3;(3)256,4【分析】(1)依照定义进行计算即可;(2)由题可知,则可得满足题意的整数的的值为1、2、3;(3)由,可知,是某个整数的平方,又是符合条件的所有数中最大的数,则,再依次进行计算【详解】解:(1)由定义可得,故答案为:2;(2),即,整数的值为1、2、3故答案为:1、2、3(3),即,可设,且是自然数,是符合条件的所有数中的最大数,即故答案为:256,4【点睛】本题属于新定义类问题,主要考查估算无理数大小,无理数的整数部分和小数部分,理解定义内容是解题关键11(1);(2)【解析】【分析】设,两边乘以2后得到关系式,与已知等式相减,变

31、形即可求出所求式子的值;同理即可得到所求式子的值【详解】解:设,将等式两边同时乘2得:,将下式减去上式得:,即,则;设,两边同时乘3得:,得:,即,则【点睛】本题考查了规律型:数字的变化类,有理数的混合运算,解题的关键是明确题意,运用题目中的解题方法,运用类比的数学思想解答问题12(1)5;(2)1;(3)16【分析】(1)根据题中定义代入即可得出;(2)根据,讨论3和 的两种大小关系,进行计算;(3)先判定A、B的大小关系,再进行求解【详解】(1)根据题意:,(2), 若,则,解得,若,则,解得(不符合题意),(3),得,【点睛】本题考查了一种新运算,读懂题意掌握新运算并能正确化简是解题的关

32、键13(1)A(0,5),B(4,0);(2)E(0,);2或6;(3)24【分析】(1)根据二次根式和偶次幂的非负性得出a,b解答即可;(2)根据三角形的面积公式得出点C的坐标,根据平行线的性质解答即可;延长CA交直线l于点H(a,10),过点H作HMx轴于点M,根据三角形面积公式解答即可;(3)平移GH到DM,连接HM,根据三角形面积公式解答即可【详解】解:(1),且,(b4)20,a50,b40,解得:a5,b4,A(0,5),B(4,0);(2)连接BE,如图1,BC6,C(2,0),ABCE,SABCSABE,AE,OE,E(0,);F(m,10),点F在过点G(0,10)且平行于x

33、轴的直线l上,延长CA交直线l于点H(a,10),过点H作HMx轴于点M,则M(a,0),如图2,SHCMSACO+S梯形AOMH,解得:a2,H(2,10),SAFCSCFHSAFH,FH4,H(2,10),F(2,10)或(6,10),m2或6;(3)平移GH到DM,连接HM,则GDHM,GDHM,如图3,四边形BDHG的面积BHM的面积,当BHHM时,BHM的面积最大,其最大值【点睛】本题主要考查图形与坐标及平移的性质,熟练掌握图形与坐标及平移的性质是解题的关键14(1) ;(2)的值为40;(3)【分析】(1)过点O作OGAB,可得ABOGCD,利用平行线的性质可求解;(2)过点M作M

34、KAB,过点N作NHCD,由角平分线的定义可设BEM=OEM=x,CFN=OFN=y,由BEO+DFO=260可求x-y=40,进而求解;(3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得即可得关于n的方程,计算可求解n值【详解】证明:过点O作OGAB,ABCD,ABOGCD,即 EOF=100,;(2)解:过点M作MKAB,过点N作NHCD,EM平分BEO,FN平分CFO,设x-y=40,MKAB,NHCD,ABCD,ABMKNHCD, =x-y=40,的值为40;(3)如图,设直线FK与EG交于点H,FK与AB交于点K,ABCD, 即

35、FK在DFO内, ,即解得 经检验,符合题意,故答案为:【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键15(1)(0,2),(4,2),见解析,ABDC面积:8;(2)存在,P的坐标为(7,0)或 (9,0)或(0,18)或 (0,14)【解析】【分析】(1)根据向右平移横坐标加,向上平移纵坐标加写出点C、D的坐标即可,再根据平行四边形的面积公式列式计算即可得解;(2)分点P在x轴和y轴上两种情况,依据SPACS四边形ABCD求解可得【详解】(1)由题意知点C坐标为(1+1,0+2),即(0,2),点D的坐标为(3+1,0+2),即(4,2),如图所示,S四

36、边形ABDC248;(2)当P在x轴上时,SPACS四边形ABCD,OC2,AP8,点P的坐标为 (7,0)或(9,0);当P在y轴上时,SPACS四边形ABCD,OA1,CP16,点P的坐标为(0,18)或(0,14);综上,点P的坐标为(7,0)或 (9,0)或(0,18)或(0,14)【点睛】本题考查了坐标与图形性质,三角形的面积,坐标与图形变化平移,熟记各性质是解题的关键16(1);(2)-17【分析】(1)解方程组求出x、y的值,根据列不等式组求出答案;(2)将两个方程相加,求得6x+3y=-9,即可得到答案【详解】解:(1)解方程组得,,解得;(2)由+得2x+y=-3,3(2x+

37、y)=-9,即6x+3y=-9,=-9-8=-17【点睛】此题考查解二元一次方程组,解一元一次不等式组,已知式子的值求代数式的值,正确解方程组是解题的关键17(1);(2)当时,和面积的相等;(3)m的取值范围是【分析】(1)利用非负数的性质求出a,b,c即可(2)设点D的坐标为(0,y),根据面积关系,构建方程求出y,再根据BOC和AOD面积的相等,构建方程求出t即可(3)分两种情形:当-2m0时,如图1中,当m-2时,如图2中,根据SMOC5,构建不等式求解即可【详解】解:(1)|a-2|+(b-3)2+=0,又|a-2|0,(b-3)20,0,a=2,b=3,c=-4;(2)设点D的坐标

38、为(0,y),则SBOD=BOOD=4y2y,SAOD=xAOD=2y=y,SAOB=OByA=436,SBOD+SAOD=SAOB,即2y+y=6,解得y=2,即点D的坐标为(0,2),SBOC=BOyc=4t=2t,SAOD=xAOD=22=2,BOC和AOD面积的相等,即2t=2,解得t=1,当t=1时,BOC和AOD面积的相等;(3)当-2m0时,如图1中,过点C作CF轴于点F,过点M作GE轴于点E,过点C作CG轴交GE于点G,则四边形CGEF为矩形,SCGEF=24=8,SCFO=211,SEMO=(0m)3=m,SCMG=(m+2)42(m+2),SMOC=SCGEF-SCFO-S

39、EMO-SCMG=81(m)2(m+2)=3m,SMOC5,即3m5,解得m-4,这与-2m0矛盾当m-2时,如图2中,过点C作GF轴于点F,过点M作ME轴于点E,过点M作MG轴交GF于点G,则四边形MEFG为矩形,SGMEF=(0-m)4=-4m,SCFO=211,SEMO=(0m)3=m,SCMG=(2m)42(m+2),SMOC=SCGEF-SCFO-SEMO-SCMG=4m1(m)2(m+2)=3m,SMOC5,即3m5,解得m-4,综上所述,m的取值范围是m-4【点睛】本题考查了坐标与图形的性质,三角形的面积,非负数的性质等知识,解题的关键是学会利用参数,构建方程解决问题,属于中考压

40、轴题18(1),;(2)或;(3)【分析】(1)根据非负数和为0,则每一个非负数都是0,即可求出a,b的值;(2)设直线AB与直线x1交于点N,可得N(1,5),根据SABMSAMNSBMN,即可表示出SABM,从而列出m的方程(3)根据题意知,临界状态是点P落在OA和AB上,分别求出此时t的值,即可得出范围【详解】(1),解得:,(2)设直线与直线交于,设a4,b4,A(4,0),B(0,4),设直线AB的函数解析式为:ykxb,代入得,解得直线AB的函数解析式为:yx4,代入x=1得5|5m|1|5m|2|5m|,或解得:或,(3)当点P在OA边上时,则2t2,t1,当点P在AB边上时,如图,过点P作PKx轴,AKx轴交于K,则KP3t,KA2t2,3t2t2,综上所述:【点睛】本题主要考查了平移的性质

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服