资源描述
人教版小学五年级数学下册期末解答试题(含答案)完整
1.把3m彩带平均分给4个小朋友,每人分到几米?
2.一根15米长的绳子,用去5米。余下的是这根绳子的几分之几?
3.甲、乙、丙三人开车,甲12分行驶了10千米乙行驶了8千米用了10分,丙9分行驶了7千,甲、乙、丙三人谁的速度最快?
4.谁采茶速度快?
5.为庆祝元旦联欢会﹐五年级一班同学们正在排练舞蹈节目。演员们不管是站成6人一排,还是站成8人一排,都正好剩下1人,已知演员人数在40~50人之间,请问有多少演员?
6.有一种地砖,长是45厘米,宽是30厘米,至少要用多少块这样的砖才能铺成一个实心的正方形?
7.向前小学五年级有70多名同学。同学们分组参加植树活动,每4名同学一组或者每6名同学一组都正好分完。向前小学五年级有多少名同学?
8.端午节那天,红红和妈妈一起包了30多个粽子。如果按照每4个装一袋,正好装完;如果每6个装一袋,也正好装完。红红和妈妈一共包了多少个粽子?
9.在“清理白色垃圾,倡导低碳生活”的活动中,五(1)班同学清理塑料垃圾千克,五(2)班同学比五(1)班多清理千克。五(1)班和五(2)班同学一共清理塑料垃圾多少千克?
10.工程队铺一条千米长的公路,第一天修了千米,第二天比第一天多修了千米。两天一共修了多少千米?
11.工程队修一条公路,第一天修了千米,比第二天少修千米。这个工程队两天共修了多少千米?
12.五年①班的同学参加学校“数学文化节”活动,班上的同学参加数独游戏,的同学参加“24点”游戏,的同学参加七巧板游戏。其余的同学被老师选派担任文化节的工作人员。
(1)五年①班参加三项数学游戏的同学一共占了班上的几分之几?
(2)五年①班担任文化节工作人员的同学占了班上的几分之几?
(3)五年①班一共有40名同学,担任文化节工作人员的同学有几人?
13.学校正在进行改扩建,需要对会议室四周(前面、后面、左面和右面)(如下图)进行粉刷。学校后勤部门通过了解,知道某品牌涂料的标价如下表。请你帮后勤部门的工作人员完成费用预算。
品牌
规格
可涂刷面积
单价
A
5L/桶
35m2
378元
14.小军为奶奶选了一份生日礼物(如下图)。
(1)礼品盒的体积是( )立方厘米。
(2)如果用彩纸包装,至少需要多少平方厘米彩纸?
(3)用彩带捆扎,至少需要多长的彩带?(打结处用了30厘米)
15.一个无盖长方体的铁皮水槽,长10分米,宽8分米,高6分米。(铁皮厚度忽略不计)
(1)做这个水槽至少需要铁皮多少平方分米?
(2)这个水槽最多可以盛水多少升?
16.化工厂要挖一个蓄水池,蓄水池的长是20米,宽是16米,深是2.5米。
(1)这个蓄水池可以存水多少立方米?
(2)要在它的四壁和底面铺上瓷砖,铺瓷砖部分的面积是多少平方米?
17.一个棱长是的正方体铁块,熔铸成一个长、宽的长方体铁块,这个长方体铁块高多少厘米?(损耗忽略不计)
18.一个棱长是6dm的正方体鱼缸,里面装满水,把水倒入一个底面积48dm2、高6dm的长方体鱼缸里,鱼缸里水有多深?
19.一个密封的长方体水箱,从里面量,长80厘米、宽30厘米、高40厘米。当水箱如下面左图放置时,水深30厘米;当水箱如下面右图放置时,水深多少厘米?
20.有一个长方体鱼缸,如图,放进去一块珊瑚石(完全沉没),水面升高了5厘米,这块珊瑚石的体积是多少?
21.画出下图中图形向右平移4格的图形,再画出平移后的图形绕点O顺时针旋转90°后的图形。
22.请按要求画图形。
(1)请画出下面图形A的对称轴。
(2)请画出图形A先向右平移6格,再向下平移2格后的图形。
(3)画一个与图形A面积相等的平行四边形。
23.按要求画图。在下图中,
(1)箭头A先向下平移4格,得到箭头B,再向左平移2格,得到箭头C;
(2)以虚线为对称轴画出箭头A的轴对称图形箭头D。
24.按要求画一画。
(1)将图形A向右平移7格,再向下平移2格,画出平移后的图形B。
(2)画出图形A以直线L为对称轴的轴对称图形C。
25.2019年2月昌江县七叉尼下木棉花开,慕名而来的游客情况统计图。
看下图回答问题:
(1)这是( )统计图。
(2)第( )个星期的游客人数最多,共( )万人。
(3)( )地游客在第( )个星期增长幅度最大,增长了( )万人。
(4)你能说说为什么第二个星期和第三个星期游客那么多吗?如果你想去观赏,你会选择什么时候去?说说你的理由。
26.看图分析问题。
下图是某教育局对该地区城镇和乡村一至五年级近视情况的抽样调查统计图(每个年级抽样调查50人)。
(1)从整体情况来看,该地区城镇和乡村学生患近视人数都呈( )趋势。相比较而言,( )学生患近视人数上升得慢一些。
(2)五年级,乡村学生患近视人数是城镇的( )。
(3)根据本次抽样调查情况,你还有哪些想法或建议。
27.五(1)班要从两个同学中选一人参加学校的投篮比赛。下表是两位同学的训练成绩:(每人每次投10个)
星期
投中数
选手
一
二
三
四
五
甲
2
6
1
7
4
乙
2
3
4
5
6
(1)根据表中数据完成折线统计图;
(2)分析数据,你认为应该选( )同学参加学校的投篮比赛。
28.下面是某服装超市2021年上半年毛衣和衬衫的销售情况统计表。
月份
1月
2月
3月
4月
5月
6月
毛衣/件
190
170
60
60
40
20
衬衫/件
80
100
140
170
180
200
(1)根据表中数据,完成复式折线统计图。
某服装超市2021年上半年毛衣和衬衫销售情况统计图
(2)( )月份毛衣销售的最多,( )月份衬衫销售的最多。
(3)衬衫销售情况呈什么变化趋势?
1.米
【分析】
把3m彩带平均分给4个小朋友,求每人分得的米数,平均分的是具体的数量3米,求的是具体的数量;用除法计算。
【详解】
3÷4=(米)
答:每人分到米。
【点睛】
本题考查分数与除法的关
解析:米
【分析】
把3m彩带平均分给4个小朋友,求每人分得的米数,平均分的是具体的数量3米,求的是具体的数量;用除法计算。
【详解】
3÷4=(米)
答:每人分到米。
【点睛】
本题考查分数与除法的关系。
2.【分析】
先用减法求出余下部分的长度,再根据求一个数是另一个数的几分之几用除法计算。
【详解】
(15-5)÷15
=10÷15
=
答:余下的是这根绳子的。
【点睛】
此题考查的是分数除法的意义
解析:
【分析】
先用减法求出余下部分的长度,再根据求一个数是另一个数的几分之几用除法计算。
【详解】
(15-5)÷15
=10÷15
=
答:余下的是这根绳子的。
【点睛】
此题考查的是分数除法的意义,掌握求一个数是另一个数的几分之几用除法计算是解题关键。
3.甲的速度最快
【分析】
首先根据路程÷时间=速度分别用甲、乙、丙三人行的路程除以各自用的时间,求出三人的速度各是多少,然后根据异分母分数的比较大小的方法,判断出三人谁的速度最快即可。
【详解】
甲:
解析:甲的速度最快
【分析】
首先根据路程÷时间=速度分别用甲、乙、丙三人行的路程除以各自用的时间,求出三人的速度各是多少,然后根据异分母分数的比较大小的方法,判断出三人谁的速度最快即可。
【详解】
甲:(千米/分)
乙:(千米/分)
丙:(千米/分)
答:甲的速度最快。
【点拨】
本题主要考查行程问题的公式以及分数和除法的关系,熟练掌握行程问题的公式并灵活运用。
4.赵阿姨
【分析】
用过采茶质量÷采茶时间,求出每小时采茶质量,比较即可。
【详解】
8÷3=
16÷7=
>
答:赵阿姨采茶速度快。
【点睛】
分数的分子相当于被除数,分母相当于除数。
解析:赵阿姨
【分析】
用过采茶质量÷采茶时间,求出每小时采茶质量,比较即可。
【详解】
8÷3=
16÷7=
>
答:赵阿姨采茶速度快。
【点睛】
分数的分子相当于被除数,分母相当于除数。
5.49名
【分析】
根据题意可知,总人数减去1人正好是6和8的公倍数,再根据“演员人数在40~50人之间”确定总人数即可。
【详解】
6=2×3;
8=2×2×2;
6和8的最小公倍数为:2×3×2×
解析:49名
【分析】
根据题意可知,总人数减去1人正好是6和8的公倍数,再根据“演员人数在40~50人之间”确定总人数即可。
【详解】
6=2×3;
8=2×2×2;
6和8的最小公倍数为:2×3×2×2=24;
24×2+1
=48+1
=49(名);
答:有49名演员。
【点睛】
解答本题的关键是先求出6和8的最小公倍数,再根据“演员人数在40~50人之间”确定总人数,切记加上去掉的1人。
6.6块
【分析】
根据题意,用长方形的砖块铺成一个大正方形,求至少需要多少块,则正方形的边长为45和30的最小公倍数;求出铺成的正方形的边长,进而求出长需要几块,宽需要几块,即可求出需要的总块数。
【
解析:6块
【分析】
根据题意,用长方形的砖块铺成一个大正方形,求至少需要多少块,则正方形的边长为45和30的最小公倍数;求出铺成的正方形的边长,进而求出长需要几块,宽需要几块,即可求出需要的总块数。
【详解】
45=3×3×5;
30=2×3×5;
45和30的最小公倍数是3×5×3×2=90;
(90÷45)×(90÷30)
=2×3
=6(块);
答:至少要用6块这样的砖才能铺成一个实心的正方形。
【点睛】
解答本题的关键是明确铺成的正方形的边长为45和30的最小公倍数,从而进一步解答。
7.72名
【分析】
根据题意可知,向前小学五年级的人数是4和6的公倍数,并且是70多名,先求出4和6的最小公倍数,再找出适合的数即可。
【详解】
4=2×2
6=2×3
4和6的最小公倍数2×2×3=
解析:72名
【分析】
根据题意可知,向前小学五年级的人数是4和6的公倍数,并且是70多名,先求出4和6的最小公倍数,再找出适合的数即可。
【详解】
4=2×2
6=2×3
4和6的最小公倍数2×2×3=12
12×6=72(名)
答:向前小学五年级有72名同学。
【点睛】
此题考查了有关公倍数的实际应用,先求出最小公倍数,再找出符合题意的数即可。
8.36个
【分析】
由如果每4个装一袋,正好装完;如果每6个装一袋,也正好装完,可知这些粽子的个数是4和6的公倍数,因为是30多个粽子,所以这些粽子的个数是4和6的公倍数中大于30小于40的数。因此先
解析:36个
【分析】
由如果每4个装一袋,正好装完;如果每6个装一袋,也正好装完,可知这些粽子的个数是4和6的公倍数,因为是30多个粽子,所以这些粽子的个数是4和6的公倍数中大于30小于40的数。因此先求出4和6的最小公倍数,然后乘自然数1、2、3、…,从中找出在30~40的4和6的公倍数即可。
【详解】
4=2×2,6=2×3,
所以4和6的最小公倍数是:2×2×3=12。
12×3=36(个)
答:红红和妈妈一共包了36个粽子。
【点睛】
掌握两个数的最小公倍数的方法是解题的关键。
9.3千克
【分析】
先利用加法求出五(2)班清理出来的塑料垃圾,再将其加上五(1)班同学清理的,求出两个班一共清理的塑料垃圾。
【详解】
=(千克)
答:五(1)班和五(2)班同学一共清理塑料垃圾3千
解析:3千克
【分析】
先利用加法求出五(2)班清理出来的塑料垃圾,再将其加上五(1)班同学清理的,求出两个班一共清理的塑料垃圾。
【详解】
=(千克)
答:五(1)班和五(2)班同学一共清理塑料垃圾3千克。
【点睛】
本题考查了分数加法的应用,正确理解题意并列式即可。
10.千米
【分析】
第一天修了千米,第二天比第一天多修了千米,则第二天修了(+)米,再把它和第一天修的长度相加即可解答。
【详解】
++
=
=
=(千米)
答:两天一共修了千米。
【点睛】
本题考查分
解析:千米
【分析】
第一天修了千米,第二天比第一天多修了千米,则第二天修了(+)米,再把它和第一天修的长度相加即可解答。
【详解】
++
=
=
=(千米)
答:两天一共修了千米。
【点睛】
本题考查分数连加的应用。根据题目中的数量关系即可解答。
11.千米
【分析】
要求两天共修多少千米,根据题意,先求出第二天修了多少千米,加上第一天修的千米数得解。
【详解】
++
=+
=(千米)
答:这个工程队两天共修了千米。
【点睛】
本题考查分数加法的简
解析:千米
【分析】
要求两天共修多少千米,根据题意,先求出第二天修了多少千米,加上第一天修的千米数得解。
【详解】
++
=+
=(千米)
答:这个工程队两天共修了千米。
【点睛】
本题考查分数加法的简单应用,注意梳理题中的数量关系。
12.(1)
(2)
(3)7人
【分析】
(1)用参加数独的占全班的几分之几+参加“24点”的占全班的几分之几+参加七巧板占全班的几分之几。
(2)将五①班学生人数看作单位“1”,用1-参加三项数学游戏
解析:(1)
(2)
(3)7人
【分析】
(1)用参加数独的占全班的几分之几+参加“24点”的占全班的几分之几+参加七巧板占全班的几分之几。
(2)将五①班学生人数看作单位“1”,用1-参加三项数学游戏的同学一共占了班上的几分之几=担任文化节工作人员的同学占了班上的几分之几。
(3)根据分数的意义,用总人数÷全班同学的份数×担任文化节工作人员的同学的份数即可。
【详解】
(1)++
=+
=
答:五年级①班参加三项数学游戏的同学一共占了班上的。
(2)1-=
答:五年级①班担任文化节工作人员的同学占了班上的。
(3)40÷40×7=7(人)
答:担任文化节工作人员的同学有7人。
【点睛】
异分母分数相加减,先通分再计算。
13.1512元
【分析】
由题意可知,要对会议室的前后、左右墙面进行粉刷,通过图中可知应该用四面墙的面积减去两扇窗户和一扇门的面积即为要粉刷的面积,再计算需要多少桶的涂料,用桶数乘单价即可求出预算,据此
解析:1512元
【分析】
由题意可知,要对会议室的前后、左右墙面进行粉刷,通过图中可知应该用四面墙的面积减去两扇窗户和一扇门的面积即为要粉刷的面积,再计算需要多少桶的涂料,用桶数乘单价即可求出预算,据此解答即可。
【详解】
10×3.5×2+8×3.5×2
=70+56
=126(平方米)
1.5×1.2×2+1.5×2
=3.6+3
=6.6(平方米)
126-6.6=119.4(平方米)
119.4÷35≈4(桶)
4×378=1512(元)
答:对会议室进行粉刷大约要准备1512元。
【点睛】
本题考查求长方体的表面积,明确需要粉刷的面积是解题的关键。
14.(1)3000;
(2)1300平方厘米;
(3)140厘米
【分析】
(1)礼品盒的体积=长×宽×高;
(2)利用长方体的表面积计算公式:(长×宽+长×高+宽×高)×2,即可求得;
(3)需要丝带
解析:(1)3000;
(2)1300平方厘米;
(3)140厘米
【分析】
(1)礼品盒的体积=长×宽×高;
(2)利用长方体的表面积计算公式:(长×宽+长×高+宽×高)×2,即可求得;
(3)需要丝带的长度=长×2+宽×2+高×4+打结处丝带的长度,据此解答。
【详解】
(1)20×15×10
=300×10
=3000(立方厘米)
(2)(20×15+15×10+20×10)×2
=(300+150+200)×2
=650×2
=1300(平方厘米)
答:至少需要1300平方厘米彩纸。
(3)20×2+15×2+10×4+30
=40+30+40+30
=140(厘米)
答:至少需要140厘米的彩带。
【点睛】
掌握长方体的体积和表面积计算公式是解答题目的关键。
15.(1)296平方分米
(2)480升
【分析】
(1)做这个水槽需要铁皮,相当于求这个水槽的表面积,根据无盖长方体的表面积公式:长×宽+(长×高+宽×高)×2,把数代入公式即可求解。
(2)根据长方
解析:(1)296平方分米
(2)480升
【分析】
(1)做这个水槽需要铁皮,相当于求这个水槽的表面积,根据无盖长方体的表面积公式:长×宽+(长×高+宽×高)×2,把数代入公式即可求解。
(2)根据长方体的体积公式:长×宽×高,把数代入求出水槽的体积,之后再转换单位即可。
【详解】
(1)10×8+(10×6+8×6)×2
=80+(60+48)×2
=80+108×2
=80+216
=296(平方分米)
答:做这个水槽至少需要铁皮296平方分米。
(2)10×8×6
=80×6
=480(立方分米)
480立方分米=480升
答:这个水槽最多可以盛水480升。
【点睛】
本题主要考查长方体的表面积和体积的公式,熟练掌握它们的公式并灵活运用。
16.(1)800立方米
(2)500平方米
【分析】
(1)要求蓄水池可以存水多少立方米,就是求这个长方体的体积,根据体积公式:V=abh,代入数据即可求解;
(2)求的是长方体的表面积,这个长方体的表
解析:(1)800立方米
(2)500平方米
【分析】
(1)要求蓄水池可以存水多少立方米,就是求这个长方体的体积,根据体积公式:V=abh,代入数据即可求解;
(2)求的是长方体的表面积,这个长方体的表面由五个长方形组成,缺少上面,最后计算这五个面的面积,解决问题。
【详解】
(1)
=320×2.5
=800(立方米)
答:这个蓄水池可以存水800立方米。
(2)
=320+2×90
=500(平方米)
答:铺瓷砖部分的面积是500平方米。
【点睛】
此题重点考查学生对长方体表面积和体积计算公式的掌握与运用情况。在计算表面积时,要分清需要计算几个长方形面的面积,缺少的是哪一个面的面积。
17.18厘米
【分析】
根据题目可知,正方体铁块熔铸成一个长方体铁块,即体积不变,根据正方体的体积公式:棱长×棱长×棱长,把数代入公式求出正方体的铁块的体积,再根据长方体的体积公式:长×宽×高,把数代入
解析:18厘米
【分析】
根据题目可知,正方体铁块熔铸成一个长方体铁块,即体积不变,根据正方体的体积公式:棱长×棱长×棱长,把数代入公式求出正方体的铁块的体积,再根据长方体的体积公式:长×宽×高,把数代入即可求出长方体铁块的高。
【详解】
6×6×6÷(4×3)
=216÷12
=18(cm)
答:这个长方体铁块高18厘米。
【点睛】
本题主要考查正方体长方体的体积公式,同时要注意,一个物体熔铸成另一个物体它的体积不变。
18.5分米
【分析】
由题意可求出水的体积,再用水的体积除以长方体的底面积即可得到水再长方体的鱼缸里的深度;据此解答。
【详解】
6×6×6÷48
=216÷48
=4.5(分米)
答:鱼缸里水有4.5
解析:5分米
【分析】
由题意可求出水的体积,再用水的体积除以长方体的底面积即可得到水再长方体的鱼缸里的深度;据此解答。
【详解】
6×6×6÷48
=216÷48
=4.5(分米)
答:鱼缸里水有4.5分米深。
【点睛】
本题考查了体积的等积变形,关键是要理解水的体积是不变的。
19.60厘米
【分析】
根据“长方体体积=长×宽×高”求出水箱中水的体积,再除以右图放置时的底面积即可求出水的深度。
【详解】
(80×30×30)÷(40×30)
=72000÷1200
=60(厘米
解析:60厘米
【分析】
根据“长方体体积=长×宽×高”求出水箱中水的体积,再除以右图放置时的底面积即可求出水的深度。
【详解】
(80×30×30)÷(40×30)
=72000÷1200
=60(厘米);
答:水深60厘米。
【点睛】
明确无论怎样放置水的体积不变是解答本题的关键。
20.27立方分米
【分析】
珊瑚石的体积等于上升部分水的体积,根据长方体体积=长×宽×高即可求得。
【详解】
5厘米=0.5分米
9×6×0.5
=54×0.5
=27(立方分米)
答:这块珊瑚石的体积
解析:27立方分米
【分析】
珊瑚石的体积等于上升部分水的体积,根据长方体体积=长×宽×高即可求得。
【详解】
5厘米=0.5分米
9×6×0.5
=54×0.5
=27(立方分米)
答:这块珊瑚石的体积是27立方分米。
【点睛】
把不规则物体的体积转化为上升部分水的体积是解答题目的关键。
21.见详解
【分析】
把图形的各个顶点平移4格然后顺次连接即可;根据旋转中心、旋转角度、旋转方向作图即可。
【详解】
【点睛】
本题考查平移和旋转,明确旋转中心、旋转角度、旋转方向是解题的关键。
解析:见详解
【分析】
把图形的各个顶点平移4格然后顺次连接即可;根据旋转中心、旋转角度、旋转方向作图即可。
【详解】
【点睛】
本题考查平移和旋转,明确旋转中心、旋转角度、旋转方向是解题的关键。
22.见详解
【分析】
(1)根据轴对称图形的意义:如果一个平面图形沿一条直线对折后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做这个图形的对称轴;
(2)根据平移的特征,把图形A
解析:见详解
【分析】
(1)根据轴对称图形的意义:如果一个平面图形沿一条直线对折后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做这个图形的对称轴;
(2)根据平移的特征,把图形A的各顶点分别向右平移6格,依次连结即可得到向右平移5格后的图形;用同样的方法即可把平移后的图形再向下平移2格后的图形;
(3)图形A的面积是由三角形面积加正方形面积的和,根据图形A的面积确定所画平行四边形的底和高,即可画图。
【详解】
(1)根据轴对称图形的意义画图如下:
(2)把这个平行四边形先向右移动6格再向下移动2格(图中红色部分)画出移动后的图形位置;
(3)图形A的面积:
4×2÷2+2×2
=4+4
=8(平方厘米)
根据平行四边形的面积为8平方厘米,可确定底为4厘米,高为2厘米(答案不唯一)。
【点睛】
此题考查的是平移、轴对称,掌握轴对称图形的意义及确定轴对称图形对称轴的条数及位置、平面图形面积的计算等是解题关键。
23.(1)(2)见详解
【分析】
(1)根据平移的特征,把箭头A各顶点分别向下平移4格,依次连结即可得到向下平移4格后的箭头B,再向左平移2格,依次连结即可得到向左平移2格后的箭头C。
(2)依据补全轴
解析:(1)(2)见详解
【分析】
(1)根据平移的特征,把箭头A各顶点分别向下平移4格,依次连结即可得到向下平移4格后的箭头B,再向左平移2格,依次连结即可得到向左平移2格后的箭头C。
(2)依据补全轴对称图形的画法:找出图形的关键点,依据对称轴画出关键点的对称点,再依据图形的形状顺次连接各点,画出最终的轴对称图形。
【详解】
(1)(2)如下图
【点睛】
本题主要考查平移以及轴对称的画法,熟练掌握它们的特征并灵活运用。
24.见详解
【分析】
(1)根据平移的特征,把图A的各顶点分别向右平移7格,再向下平移2格,依次连结即可得到平移后的图形;
(2)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴
解析:见详解
【分析】
(1)根据平移的特征,把图A的各顶点分别向右平移7格,再向下平移2格,依次连结即可得到平移后的图形;
(2)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图A的关键对称点,依次连结即可。
【详解】
(1)画出图A先向右平移7格,再向下平移2格后的图形(图中红色部分):
(2)以以直线L为对称轴,画出图形A的轴对称图形(图中蓝色部分):
【点睛】
此题考查的是平移和轴对称图形,解答此题要注意平移:①方向;②距离.整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动,求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点,然后依次连结各对称点即可。
25.(1)复式折线;
(2)三,8.5;
(3)外,二,2.7;
(4)因为第二个星期和第三个星期正是木棉花单朵花开放时间,是最美的时候,而第一星期和第四星期是刚开和花落时候,如果我去也选择第二个星期或
解析:(1)复式折线;
(2)三,8.5;
(3)外,二,2.7;
(4)因为第二个星期和第三个星期正是木棉花单朵花开放时间,是最美的时候,而第一星期和第四星期是刚开和花落时候,如果我去也选择第二个星期或第三个星期去。
【分析】
(1)根据上图可知,这是一个复式折线统计图;
(2)(3)根据上图的数据直接解答即可;
(4)分局木棉花开的时间进行解答。
【详解】
由分析得,
(1)这是折线统计图。
(2)第一星期:1+0.3=1.3(万人)
第二星期:4+3=7(万人)
第三星期:5+3.5=8.5(万人)
第四星期:1+0.7=1.7(万人)
8.5>7>1.7>1.3
所以,第三个星期的游客人数最多,共8.5万人。
(3)3-0.3=2.7(万人)
外地游客在第二个星期增长幅度最大,增长了2.7万人。
(4)因为第二个星期和第三个星期正是木棉花单朵花开放时间,是最美的时候,而第一星期和第四星期是刚开和花落时候,如果我去也选择第二个星期或第三个星期去。
【点睛】
此题考查的是有关折线统计图的知识点,解答此题关键是从统计图中获取信息,并根据信息解决问题。
26.(1)上升;乡村;
(2);
(3)城镇的小学生应少玩电脑、手机等,加强保护眼睛的行动,多参加户外活动。
【分析】
(1)由复式折线统计图可知,两条折线都呈现上升趋势,代表乡村近视情况的折线走势比代
解析:(1)上升;乡村;
(2);
(3)城镇的小学生应少玩电脑、手机等,加强保护眼睛的行动,多参加户外活动。
【分析】
(1)由复式折线统计图可知,两条折线都呈现上升趋势,代表乡村近视情况的折线走势比代表城镇近视情况的折线走势平缓,则乡村学生患近视人数上升得慢一些;
(2)由图可知,乡村学生五年级患近视人数是12人,城镇学生五年级患近视人数是19人,A是B的几分之几计算方法:A÷B=;
(3)根据调查情况,建议城镇的小学生多参加课外活动,注重健康用眼等合理化建议即可。
【详解】
(1)从整体情况来看,该地区城镇和乡村学生患近视人数都呈( 上升 )趋势。相比较而言,( 乡村 )学生患近视人数上升得慢一些;
(2)12÷19=;
(3)城镇的小学生应少玩电脑、手机等,加强保护眼睛的行动,多参加户外活动。(答案不唯一)
【点睛】
掌握折线统计图的特点是解答题目的关键。
27.(1)见详解
(2)乙
【分析】
(1)根据统计表提供的数据,绘制统计图;
(2)根据统计图提供的信息,选出哪位同学参加比赛。
【详解】
(1)
(2)根据统计图可知,乙同学的投篮成绩逐步上升,选
解析:(1)见详解
(2)乙
【分析】
(1)根据统计表提供的数据,绘制统计图;
(2)根据统计图提供的信息,选出哪位同学参加比赛。
【详解】
(1)
(2)根据统计图可知,乙同学的投篮成绩逐步上升,选乙同学参加比赛。
【点睛】
本题考查折线统计图的绘制,以及根据统计图提供的信息,解答问题。
28.(1)见详解
(2)1;6
(3)上升趋势
【分析】
(1)折线统计图的绘制方法:根据图纸的大小,确定纵轴和横轴每一个单位的长度;根据纵轴、横轴的单位长度,画出纵轴和横轴,并画出方格图;根据各数量的
解析:(1)见详解
(2)1;6
(3)上升趋势
【分析】
(1)折线统计图的绘制方法:根据图纸的大小,确定纵轴和横轴每一个单位的长度;根据纵轴、横轴的单位长度,画出纵轴和横轴,并画出方格图;根据各数量的多少,在方格图的纵线或横线(或纵、横的交点)上描出表示数量多少的点;把各点用线段顺次连接起来;写出标题,注明单位,可以写明调查日期或制图日期。复式折线统计图还要画出图例。
(2)观察统计图,数据位置越高销量越多。
(3)观察统计图,折线往上表示上升趋势,折线往下表示下降趋势。
【详解】
(1)某服装超市2021年上半年毛衣和衬衫销售情况统计图
(2)1月份毛衣销售的最多,6月份衬衫销售的最多。
(3)衬衫销售呈现上升趋势。
【点睛】
折线统计图不仅能看清数量的多少,还能通过折线的上升和下降表示数量的增减变化情况。复式折线统计图表示2个及以上的量的增减变化情况。
展开阅读全文