1、一、解答题1(了解概念)在平面直角坐标系中,若,式子的值就叫做线段的“勾股距”,记作同时,我们把两边的“勾股距”之和等于第三边的“勾股距”的三角形叫做“等距三角形”(理解运用)在平面直角坐标系中,(1)线段的“勾股距” ;(2)若点在第三象限,且,求并判断是否为“等距三角形”(拓展提升)(3)若点在轴上,是“等距三角形”,请直接写出的取值范围2已知ABCD,ABE与CDE的角分线相交于点F(1)如图1,若BM、DM分别是ABF和CDF的角平分线,且BED100,求M的度数;(2)如图2,若ABMABF,CDMCDF,BED,求M的度数;(3)若ABMABF,CDMCDF,请直接写出M与BED之
2、间的数量关系3如图1,把一块含30的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上(1)根据图1填空:1 ,2 ;(2)现把三角板绕B点逆时针旋转n如图2,当n25,且点C恰好落在DG边上时,求1、2的度数;当0n180时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由4已知,点为平面内一点,于(1)如图1,求证:;(2)如图2,过点作的延长线于点,求证:;(3)如图3,在(2)问的条件下,点、在上,连接、,且平分,平分,若,求的度数5问题情境:如图1,ABCD,PAB130,PCD1
3、20求APC的度数小明的思路是:过P作PEAB,通过平行线性质,可得APCAPE+CPE50+60110问题解决:(1)如图2,ABCD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),PAB,PCD,判断APC、之间的数量关系并说明理由;(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时请直接写出APC、B之间的数量关系;(3)如图3,ABCD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,BAP和DCP的平分线交于点Q若APC116,请结合(2)中的规律,求AQC的度数6综合与探究(问题情境)王老师组织
4、同学们开展了探究三角之间数量关系的数学活动(1)如图1,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系; (问题迁移)(2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动,当点在、(不与、重合)两点之间运动时,设,则,之间有何数量关系?请说明理由若点不在线段上运动时(点与点、三点都不重合),请你画出满足条件的所有图形并直接写出,之间的数量关系7先阅读然后解答提出的问题:设a、b是有理数,且满足,求ba的值解:由题意得,因为a、b都是有理数,所以a3,b+2也是有理数,由于是无理数,所以a-3=0,b+2=0,所以a=3,b=2,
5、 所以问题:设x、y都是有理数,且满足,求x+y的值8小学的时候我们已经学过分数的加减法法则:“同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,转化为同分母分数,再加减”如:,反之,这个式子仍然成立,即:.(1)问题发现观察下列等式:,猜想并写出第个式子的结果: (直接写出结果,不说明理由)(2)类比探究将(1)中的的三个等式左右两边分别相加得:,类比该问题的做法,请直接写出下列各式的结果: ; ;(3)拓展延伸计算:9新定义:对非负数x“四舍五入”到个位的值记为,即当n为非负数时,若,则=n.例如=0,=1,=2,=4,试回答下列问题:(1)填空:=_;如果=2,实数x的取
6、值范围是_.(2)若关于x的不等式组的整数解恰有4个,求的值;(3)求满足的所有非负实数x的值.10先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中这26个字母依次对应这26个自然数(见下表)QWERTYUIOPASD12345678910111213FGHJKLZXCVBNM14151617181920212223242526给出一个变换公式:将明文转成密文,如,即变为:,即A变为S将密文转成成明文,如,即变为:,即D变为F(1)按上述方法将明文译为密文(2)若按上方法将明文译成的密文为,请
7、找出它的明文11先阅读然后解答提出的问题:设a、b是有理数,且满足,求ba的值解:由题意得,因为a、b都是有理数,所以a3,b+2也是有理数,由于是无理数,所以a-3=0,b+2=0,所以a=3,b=2, 所以问题:设x、y都是有理数,且满足,求x+y的值12阅读材料,回答问题:(1)对于任意实数x,符号表示“不超过x的最大整数”,在数轴上,当x是整数,就是x,当x不是整数时,是点x左侧的第一个整数点,如,则_,_(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按
8、1元计算,具体权费标准如下:里程范围4公里以内(含4公里)4-12公里以内(含12公里)12-24公里以内(含24公里)24公里以上收费标准2元4公里/元6公里/元8公里/元若从下沙江滨站到文海南路站的里程是3.07公里,车费_元,下沙江滨站到金沙湖站里程是7.93公里,车费_元,下沙江滨站到杭州火东站里程是19.17公里,车费_元;若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?13如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,其中a、b满足关系式:_,_,的面积为_;如图2,石于点C,点P是线段OC上一点,连接BP,延长BP交AC
9、于点当时,求证:BP平分;提示:三角形三个内角和等于如图3,若,点E是点A与点B之间上一点连接CE,且CB平分问与有什么数量关系?请写出它们之间的数量关系并请说明理由14如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值15如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2)(1)直接写出点E的坐标 ;D的坐标 (3)点P是线段CE上一动点,设C
10、BP=x,PAD=y,BPA=z,确定x, y,z之间的数量关系,并证明你的结论16中国传统节日“端午节”期间,某商场开展了“欢度端午,回馈顾客”的让利促销活动,对部分品牌的粽子进行了打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买5盒甲品牌粽子和4盒乙品牌粽子需520元(1)打折前,每盒甲、乙品牌粽子分别为多少元?(2)在商场让利促销活动期间,某敬老院准备购买甲、乙两种品牌粽子共40盒,总费用不超过2300元,问敬老院最多可购买多少盒乙品牌粽子?17如图1,在直角坐标系中直线与、轴的交点分别为,且满足.(1)求、的值;(2)
11、若点的坐标为且,求的值;(3)如图2,点坐标是,若以2个单位/秒的速度向下平移,同时点以1个单位/秒的速度向左平移,平移时间是秒,若点落在内部(不包含三角形的边),求的取值范围18如图所示,在直角坐标系中,已知,将线段平移至,连接、,且,点在轴上移动(不与点、重合)(1)直接写出点的坐标;(2)点在运动过程中,是否存在的面积是的面积的3倍,如果存在请求出点的坐标,如果不存在请说明理由;(3)点在运动过程中,请写出、三者之间存在怎样的数量关系,并说明理由19如图,学校印刷厂与A,D两地有公路、铁路相连,从A地购进一批每吨8000元的白纸,制成每吨10000元的作业本运到D地批发,已知公路运价1.
12、5元/(tkm),铁路运价1.2元/(tkm)这两次运输支出公路运费4200元,铁路运费26280元(1)白纸和作业本各多少吨?(2)这批作业本的销售款比白纸的购进款与运输费的和多多少元?20某企业用规格是170cm40cm的标准板材作为原材料,按照图所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm)(1)求图中a、b的值;(2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计)一共可裁剪出甲型板材张,乙型板材张; 恰好一共可以做出竖式和横式两种无盖装饰盒子多少个?
13、21如图,已知,且满足.(1)求、两点的坐标;(2)点在线段上,、满足,点在轴负半轴上,连交轴的负半轴于点,且,求点的坐标;(3)平移直线,交轴正半轴于,交轴于,为直线上第三象限内的点,过作轴于,若,且,求点的坐标.22一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k,那么称这个四位正整数为“k类诚勤数”,例如:2534,因为,所以2534 是“7类诚勤数”(1)请判断7441和5436是否为“诚勤数”并说明理由;(2)若一个四位正整数A为“5类诚勤数”且能被13整除,请求出的所有可能取值23阅读感悟:有些关于方程组的问题,要求的结果不是每一个未知数的值,而是
14、关于未知数的代数式的值,如以下问题:已知实数、满足,求和的值本题常规思路是将两式联立组成方程组,解得、的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由可得,由+2可得这样的解题思想就是通常所说的“整体思想”解决问题:(1)已知二元一次方程组,则_,_;(2)某班级组织活动购买小奖品,买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元,则购买6支水笔、6块橡皮、6本记事本共需多少元?(3)对于实数、,定义新运算:,其中、是常数,等式右边是通常的加法和乘法运算
15、已知,那么_24对a,b定义一种新运算T,规定:T(a,b)(a+2b)(ax+by)(其中x,y均为非零实数)例如:T(1,1)3x+3y(1)已知T(1,1)0,T(0,2)8,求x,y的值;(2)已知关于x,y的方程组,若a2,求x+y的取值范围;(3)在(2)的条件下,已知平面直角坐标系上的点A(x,y)落在坐标轴上,将线段OA沿x轴向右平移2个单位,得线段OA,坐标轴上有一点B满足三角形BOA的面积为9,请直接写出点B的坐标25某体育拓展中心的门票每张10元,一次性使用考虑到人们的不同需求,也为了吸引更多的顾客,该拓展中心除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票
16、从购买日起,可供持票者使用一年)的售票方法年票分A、B两类:A类年票每张120元,持票者可不限次进入中心,且无需再购买门票;B类年票每张60元,持票者进入中心时,需再购买门票,每次2元(1)小丽计划在一年中花费80元在该中心的门票上,如果只能选择一种购买门票的方式,她怎样购票比较合算?(2)小亮每年进入该中心的次数约20次,他采取哪种购票方式比较合算?(3)小明根据自己进入拓展中心的次数,购买了A类年票,请问他一年中进入该中心不低于多少次?26某市出租车的起步价是7元(起步价是指不超过行程的出租车价格),超过3km行程后,其中除的行程按起步价计费外,超过部分按每千米1.6元计费(不足按计算)如
17、果仅去程乘出租车而回程时不乘坐此车,并且去程超过,那么顾客还需付回程的空驶费,超过部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费)如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费现设小文等4人从市中心A处到相距()的B处办事,在B处停留的时间在3分钟以内,然后返回A处现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元);方案二:4人乘同一辆出租车往返问选择哪种计费方式更省钱?(写出过程)27如图,在平面直角坐标系中,轴,轴,且,动点从点出发,以每秒的速度,沿路线向点运动;动点从点出发,以每秒的速度,沿
18、路线向点运动若两点同时出发,其中一点到达终点时,运动停止()直接写出三个点的坐标;()设两点运动的时间为秒,用含的式子表示运动过程中三角形的面积;()当三角形的面积的范围小于16时,求运动的时间的范围28对、定义了一种新运算T,规定(其中,均为非零常数),这里等式右边是通常的四则运算,例如:,已知,(1)求,的值;(2)求(3)若关于的不等式组恰好有4个整数解,求的取值范围29阅读理解:定义:,为数轴上三点,若点到点的距离是它到点的时距离的(为大于1的常数)倍,则称点是的倍点,且当是的倍点或的倍点时,我们也称是和两点的倍点例如,在图1中,点是的2倍点,但点不是的2倍点(1)特值尝试若,图1中,
19、点_是的2倍点(填或)若,如图2,为数轴上两个点,点表示的数是,点表示的数是4,数_表示的点是的3倍点(2)周密思考:图2中,一动点从出发,以每秒2个单位的速度沿数轴向左运动秒,若恰好是和两点的倍点,求所有符合条件的的值(用含的式子表示)(3)拓展应用数轴上两点间的距离不超过30个单位长度时,称这两点处于“可视距离”若(2)中满足条件的和两点的所有倍点均处于点的“可视距离”内,请直接写出的取值范围(不必写出解答过程)30如图,在平面直角坐标系中,点的坐标分别是,现同时将点分别向上平移2个单位长度,再向右平移2个单位长度,得到的对应点.连接.(1)写出点的坐标并求出四边形的面积.(2)在轴上是否
20、存在一点,使得的面积是面积的2倍?若存在,请求出点的坐标;若不存在,请说明理由.(3)若点是直线上一个动点,连接,当点在直线上运动时,请直接写出与的数量关系. 【参考答案】*试卷处理标记,请不要删除一、解答题1(1)5;(2)dAC=11,ABC不是为“等距三角形”;(3)m4【分析】(1)根据两点之间的直角距离的定义,结合O、P两点的坐标即可得出结论;(2)根据两点之间的直角距离的定义,用含x、y的代数式表示出来d(O,Q)=4,结合点Q(x,y)在第一象限,即可得出结论;(3)由点N在直线y=x+3上,设出点N的坐标为(m,m+3),通过寻找d(M,N)的最小值,得出点M(2,-1)到直线
21、y=x+3的直角距离【详解】解:(1)由“勾股距”的定义知:dOA=|2-0|+|3-0|=2+3=5,故答案为:5;(2)dAB=|4-2|+|2-3|=2+1=3,2dAB=6,点C在第三象限,m0,n0,dOC=|m-0|+|n-0|=|m|+|n|=-m-n=-(m+n),dOC=2dAB,-(m+n)=6,即m+n=-6,dAC=|2-m|+|3-n|=2-m+3-n=5-(m+n)=5+6=11,dBC=|4-m|+|2-m|=4-m+2-n=6-(m+n)=6+6=12,5+1112,11+125,12+511,ABC不是为“等距三角形”;(3)点C在x轴上时,点C(m,0),则
22、dAC=|2-m|+3,dBC=|4-m|+2,当m2时,dAC=2-m+3=5-m,dBC=4-m+2=6-m,若ABC是“等距三角形”,5-m+6-m=11-2m=3,解得:m=4(不合题意),又5-m+3=8-m6-m,当2m4时,dAC=m-2+3=m+1,dBC=4-m+2=6-m,若ABC是“等距三角形”,则m+1+6-m=73,6-m+3=m+1,解得:m=4(不和题意),当m4时,dAC=m+1,dBC=m-2,若ABC是“等距三角形”,则m+1+m-2=3,解得:m=4,m-2+3=m+1恒成立,m4时,ABC是“等距三角形”,综上所述:ABC是“等距三角形”时,m的取值范围
23、为:m4【点睛】本题考查坐标与图形的性质,关键是对“勾股距”和“等距三角形”新概念的理解,运用“勾股距”和“等距三角形”解题2(1)65;(2);(3)2nM+BED=360【分析】(1)首先作EGAB,FHAB,连结MF,利用平行线的性质可得ABE+CDE=260,再利用角平分线的定义得到ABF+CDF=130,从而得到BFD的度数,再根据角平分线的定义和三角形外角的性质可求M的度数;(2)先由已知得到ABE=6ABM,CDE=6CDM,由(1)得ABE+CDE=360-BED,M=ABM+CDM,等量代换即可求解;(3)由(2)的方法可得到2nM+BED=360【详解】解:(1)如图1,作
24、,连结,和的角平分线相交于,、分别是和的角平分线,;(2)如图1,与两个角的角平分线相交于点,;(3)由(2)结论可得,则【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质3(1)120,90;(2)1=120-n,2=90+n;见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)根据邻补角的定义求出ABE,再根据两直线平行,同位角相等可得1=ABE,根据两直线平行,同旁内角互补求出BCG,然后根据周角等于360计算即可得到2;结合图形,分AB、BC、AC三条边与直尺垂直讨论求解【详解】解:(1)1=180-60=12
25、0,2=90;故答案为:120,90;(2)如图2,ABC=60,ABE=180-60-n=120-n,DGEF, 1=ABE=120-n,BCG=180-CBF=180-n,ACB+BCG+2=360,2=360-ACB-BCG=360-90-(180-n)=90+n;当n=30时,ABC=60,ABF=30+60=90,ABDG(EF);当n=90时,C=CBF=90,BCDG(EF),ACDE(GF);当n=120时,ABDE(GF)【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键4(1)见解析;(2)见解析;(3
26、)【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可;(3)设DBE=a,则BFC=3a,根据角平分线的定义可得ABD=C=2a,FBC=DBC=a+45,根据三角形内角和可得BFC+FBC+BCF=180,可得AFC=BCF的度数表达式,再根据平行的性质可得AFC+NCF=180,代入即可算出a的度数,进而完成解答【详解】(1)证明:,于,;(2)证明:过作,又,;(3)设DBE=a,则BFC=3a,BE平分ABD,ABD=C=2a,又ABBC,BF平分DBC,DBC=ABD+ABC=2a+90,即:FBC=DBC=a+45又
27、BFC+FBC+BCF=180,即:3a+a+45+BCF=180BCF=135-4a,AFC=BCF=135-4a,又AM/CN,AFC+ NCF=180,即:AFC+BCN+BCF=180,135-4a+135-4a+2a=180,解得a=15,ABE=15,EBC=ABE+ABC=15+90=105【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键5(1)APC=+,理由见解析;(2)APC=-或APC=-;(3)58【分析】(1)过点P作PEAB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线上运动两
28、种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PEAB,QFAB,根据平行线的判定与性质及角的和差即可求解【详解】解:(1)如图2,过点P作PEAB,ABCD,PEABCD,APE=,CPE=,APC=APE+CPE=+(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,ABCD,PAB=,1=PAB=,1=APC+PCD,PCD=,=APC+,APC=-;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,ABCD,PCD=,2=PCD=,2=PAB+APC,PAB=,=+APC,APC=-;(3)如图3,过点P,Q分别作PEAB,QFAB,A
29、BCD,ABQFPECD,BAP=APE,PCD=EPC,APC=116,BAP+PCD=116,AQ平分BAP,CQ平分PCD,BAQ=BAP,DCQ=PCD,BAQ+DCQ=(BAP+PCD)=58,ABQFCD,BAQ=AQF,DCQ=CQF,AQF+CQF=BAQ+DCQ=58,AQC=58【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键6(1);(2),理由见解析;图见解析,或【分析】(1)作PQEF,由平行线的性质,即可得到答案;(2)过作交于,由平行线的性质,得到,即可得到答案;根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;
30、与同理,利用平行线的性质,即可求出答案【详解】解:(1)作PQEF,如图:,;(2);理由如下:如图,过作交于, , ; 当点在延长线时,如备用图1: PEADBC,EPC=,EPD=,; 当在之间时,如备用图2:PEADBC,EPD=,CPE=,【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系77或-1.【分析】根据题目中给出的方法,对所求式子进行变形,求出x、y的值,进而可求x+y的值.【详解】解:,=0,=0x=4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1x+y的值是7或-1.【点睛】本题考
31、查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.8(1) ;(2);(3) 【分析】(1)根据题目中的式子可以写出第n个式子的结果;(2)根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;(3)根据题目中式子的特点,可以求得所求式子的值【详解】解:(1)由题目中的式子可得,故答案为:;(2),故答案为:;,故答案为:;(3)【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值9(1)10;(2)(3):0,1,2【详解】分析:(
32、1)利用对非负数x“四舍五入”到个位的值为,进而求解即可;(2)首先将看做一个字母,解不等式,进而根据整数解的个数得出m的取值;(3)利用得出关于x的不等式,求解即可.详解:(1)10,;(2)解不等式组得:由不等式组的整数解恰有4个得,;(3),x为非负整数,x的值为:0,1,(2)点睛:此题主要考查了理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题得解.10(1)N,E,T密文为M,Q,P;(2)密文D,W,N的明文为F,Y,C【分析】(1)由图表找出N,E,T对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P对应的自然数,再根据变换.公式变成明文.【详解】解
33、:(1)将明文NET转换成密文:即N,E,T密文为M,Q,P;(2)将密文D,W,N转换成明文:即密文D,W,N的明文为F,Y,C【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换117或-1.【分析】根据题目中给出的方法,对所求式子进行变形,求出x、y的值,进而可求x+y的值.【详解】解:,=0,=0x=4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1x+y的值是7或-1.【点睛】本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.12(1);(2)2;3;6这个乘客花
34、费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得;根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得【详解】(1)故答案为:;(2)3.07公里需要2元7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元7.93公里所需费用为:(元)公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;公里所需费用为:(元)故答案为:2;3;6由题意得:乘坐24公里所需费用分为三段:前4
35、公里2元,4至12公里2元,12公里至24公里2元;乘坐24公里所需费用为:(元)由表格可知:乘坐24公里以上的部分,每一元可以坐8公里7元可以乘坐的地铁最大里程为:(公里)这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键13(1);6;(2)证明见解析;(3),理由见解析.【详解】分析:(1)求出CD的长度,再根据三角形的面积公式列式计算即可得解;(2)根据等角的余角相等解答即可;(3)首先证明A
36、CD=ACE,推出DCE=2ACD,再证明ACD=BCO,BEC=DCE=2ACD即可解决问题;【解答】(1)解:如图1中,|a+4|+(b-a-1)2=0,a=-4,b=-3,点C(0,-4),D(-3,-4),CD=3,且CDx轴,BCD的面积=43=6;故答案为-4,-3,6(2)如图2中,CPQ=CQP=OPB,ACBC,CBQ+CQP=90,又ABQ+CPQ=90,ABQ=CBQ,BQ平分CBA(3)如图3中,结论:BEC=2BCO理由:ACBC,ACB=90,ACD+BCF=90,CB平分ECF,ECB=BCF,ACD+ECB=90,ACE+ECB=90,ACD=ACE,DCE=2
37、ACD,ACD+ACO=90,BCO+ACO=90,ACD=BCO,C(0,-4),D(-3,-4),CDAB,BEC=DCE=2ACD,BEC=2BCO,点睛:本题考查了坐标与图形性质,三角形的角平分线,三角形的面积,三角形的内角和定理,三角形的外角性质等知识,熟记性质并准确识图是解题的关键14(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,然后
38、根据三角形外角的性质解答即可;(3)设BF交MN于K,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行
39、线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键15(1)(-2,0);(-3,0);(2)z=x+y证明见解析【分析】(1)依据平移的性质可知BCx轴,BC=AE=3,然后依据点A和点C的坐标可得到点E和点D的坐标;(2过点P作PFBC交AB于点F,则PFAD,然后依据平行线的性质可得到BPF=CBP=x,APF=DAP=y,最后,再依据角的和差关系进行解答即可【详解】解:(1)将三角形OAB沿x轴负方向平移,BCx轴,BC=AE=3C(-3,2),A(1,0),E(-2,0),D(-3,0)故答案为:(-2,0);(-3,0)(2)z=x+y证明如下:如
40、图,过点P作PFBC交AB于点F,则PFAD,BPF=CBP=x,APF=DAP=y,BPABPF+APF=x+y=z,z=x+y【点睛】此题是几何变换综合题,主要考查了点的坐标的特点,平移得性质,平面坐标系中点的坐标和距离的关系,解本题的关键是由线段和部分点的坐标,得出其它点的坐标16(1)打折前,甲品牌粽子每盒70元,乙品牌粽子每盒80元;(2)最多可购买15盒乙品牌粽子【分析】(1)设打折前甲品牌粽子每盒元,乙品牌粽子每盒元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买5盒甲品牌粽子和4盒乙品牌粽子需要520元”,即可得出关于、的二元一次方程组,解之即可得出结论;(2)设敬老院可购买盒乙品牌粽子即可得出关于的一元一次不等式,解之取其中的最大值整数值即可得出结论【详解】解:(1)设打折前,每盒甲品牌粽子元,每盒乙品牌粽子元,根据题意,得:,解得,答:打折前,甲品牌粽子每盒70元,乙品牌粽子每盒80元(2)设敬老院可购买盒乙品牌粽子打折后,甲品牌粽子每盒:(元,乙品牌粽子每盒:(元,根据题意,得:,解得的最大整数解为答:最多可购买15盒乙品牌粽子【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式17(1),;(