1、一、解答题1如图,A点的坐标为(0,3),B点的坐标为(3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90得线段AE,使得AEAD,且AEAD,连接BE交y轴于点M(1)如图,当点D在线段OB的延长线上时,若D点的坐标为(5,0),求点E的坐标求证:M为BE的中点探究:若在点D运动的过程中,的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由)2如图,直线,一副直角三角板中,(1)若如图1摆放,当平分时,证明:平分(2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于
2、点,作和的角平分线相交于点(如图3),求的度数(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间3已知:ABCD,截线MN分别交AB、CD于点M、N(1)如图,点B在线段MN上,设EBM,DNM,且满足+(60)20,求BEM的度数;(2)如图,在(1)的条件下,射线DF平分CDE,且交线段BE的延长线于点F;请写出DEF与CDF之间的数量关系,并说明理由;(3)如图,当点P在射线NT上运动时,DCP
3、与BMT的平分线交于点Q,则Q与CPM的比值为 (直接写出答案)4已知ABCD,ABE与CDE的角分线相交于点F(1)如图1,若BM、DM分别是ABF和CDF的角平分线,且BED100,求M的度数;(2)如图2,若ABMABF,CDMCDF,BED,求M的度数;(3)若ABMABF,CDMCDF,请直接写出M与BED之间的数量关系5已知:如图,直线AB/CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN (1)点M,N分别在射线QC,QF上(不与点Q重合),当APM+QMN=90时,试判断PM与MN的位置关系,并说明理由;若PA平分E
4、PM,MNQ=20,求EPB的度数(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PMMN条件的图形,并直接写出此时APM与QMN的关系(注:此题说理时不能使用没有学过的定理)6问题情境:如图1,ABCD,PAB130,PCD120求APC的度数小明的思路是:过P作PEAB,通过平行线性质,可得APCAPE+CPE50+60110问题解决:(1)如图2,ABCD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),PAB,PCD,判断APC、之间的数量关系并说明理由;(2)在(1)的条件下,如果点P在
5、线段MN或NM的延长线上运动时请直接写出APC、B之间的数量关系;(3)如图3,ABCD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,BAP和DCP的平分线交于点Q若APC116,请结合(2)中的规律,求AQC的度数7我们知道,任意一个正整数都可以进行这样的分解:(,是正整数,且),在的所有这种分解中,如果,两因数之差的绝对值最小,我们就称是的最佳分解,并规定:例如:可分解成,或,因为,所以是的最佳分解,所以(1)填空: ; ;(2)一个两位正整数(,为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为,求出所有的两位正整数;并求的最大值;(3)填空:
6、 ; ;8请观察下列等式,找出规律并回答以下问题,(1)按照这个规律写下去,第5个等式是:_;第n个等式是:_(2)计算:若a为最小的正整数,求:9阅读理解:计算时,若把与分别各看着一个整体,再利用分配律进行运算,可以大大简化难度过程如下:解:设为A,为B,则原式=B(1+A)A(1+B)=B+ABAAB=BA=请用上面方法计算:-10(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根华罗庚脱口而出:“39”邻座的乘客十分惊奇,忙间其中计算的奥妙你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:第一步:,能确定59319的立方
7、根是个两位数第二步:59319的个位数是9,能确定59319的立方根的个位数是9第三步:如果划去59319后面的三位319得到数59,而,则,可得,由此能确定59319的立方根的十位数是3,因此59319的立方根是39(解答问题)根据上面材料,解答下面的问题(1)求110592的立方根,写出步骤(2)填空:_11阅读下列解题过程:为了求的值,可设,则,所以得,所以;仿照以上方法计算:(1) .(2)计算:(3)计算:12在已有运算的基础上定义一种新运算:,的运算级别高于加减乘除运算,即的运算顺序要优先于运算,试根据条件回答下列问题(1)计算: ;(2)若,则 ;(3)在数轴上,数的位置如下图所
8、示,试化简:;(4)如图所示,在数轴上,点分别以1个单位每秒的速度从表示数-1和3的点开始运动,点向正方向运动,点向负方向运动,秒后点分别运动到表示数和的点所在的位置,当时,求的值13如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,点C的坐标为(3,2)(1)直接写出点E的坐标 ;(2)在四边形ABCD中,点P从点O出发,沿OBBCCD移动,若点P的速度为每秒1个单位长度,运动时间为t秒,请解决以下问题;当t为多少秒时,点P的横坐标与纵坐标互为相反数;当t为多少秒时,三角形PEA的面积为2,求此时P的坐标14如图1,点在直线、之间,且(1)求证
9、:;(2)若点是直线上的一点,且,平分交直线于点,若,求的度数;(3)如图3,点是直线、外一点,且满足,与交于点已知,且,则的度数为_(请直接写出答案,用含的式子表示)15如图1,在平面直角坐标系中,且满足,过作轴于(1)求的面积(2)若过作交轴于,且分别平分,如图2,求的度数(3)在轴上存在点使得和的面积相等,请直接写出点坐标16请阅读求绝对值不等式和的解的过程对于绝对值不等式,从图1的数轴上看:大于而小于的数的绝对值小于,所以的解为;对于绝对值不等式,从图2的数轴上看:小于或大于的数的绝对值大于,所以的解为或(1)求绝对值不等式的解(2)已知绝对值不等式的解为,求的值(3)已知关于,的二元
10、一次方程组的解满足,其中是负整数,求的值17(了解概念)在平面直角坐标系中,若,式子的值就叫做线段的“勾股距”,记作同时,我们把两边的“勾股距”之和等于第三边的“勾股距”的三角形叫做“等距三角形”(理解运用)在平面直角坐标系中,(1)线段的“勾股距” ;(2)若点在第三象限,且,求并判断是否为“等距三角形”(拓展提升)(3)若点在轴上,是“等距三角形”,请直接写出的取值范围18在平面直角坐标系中,满足(1)直接写出、的值: ; ;(2)如图1,若点满足的面积等于6,求的值;(3)设线段交轴于C,动点E从点C出发,在轴上以每秒1个单位长度的速度向下运动,动点F从点出发,在轴上以每秒2个单位长度的
11、速度向右运动,若它们同时出发,运动时间为秒,问为何值时,有?请求出的值19数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由20如图,和的度数满足方程组,且,(1)用解方程的方法求和的度数;(2)求的度数21为了加强公民的节水意识,合理利用
12、水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a元收费,超过的部分按c元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:月份用水量(m3)收费(元)357.54927(1)求a、c的值,并写出每月用水量不超过6米3和超过6米3时,水费与用水量之间的关系式;(2)已知某户5月份的用水量为8米3,求该用户5月份的水费22如图,平面直角坐标系中,已知点A(a,0),B(0,b),其中a,b满足将点B向右平移24个单位长度得到点C点D,E分别为线段BC,OA上一动点,点D从点C以2个单位长度/秒
13、的速度向点B运动,同时点E从点O以3个单位长度/秒的速度向点A运动,在D,E运动的过程中,DE交四边形BOAC的对角线OC于点F设运动的时间为t秒(0t10),四边形BOED的面积记为S四边形BOED(以下面积的表示方式相同)(1)求点A和点C的坐标;(2)若S四边形BOEDS四边形ACDE,求t的取值范围;(3)求证:在D,E运动的过程中,SOEFSDCF总成立23对a,b定义一种新运算T,规定:T(a,b)(a+2b)(ax+by)(其中x,y均为非零实数)例如:T(1,1)3x+3y(1)已知T(1,1)0,T(0,2)8,求x,y的值;(2)已知关于x,y的方程组,若a2,求x+y的取
14、值范围;(3)在(2)的条件下,已知平面直角坐标系上的点A(x,y)落在坐标轴上,将线段OA沿x轴向右平移2个单位,得线段OA,坐标轴上有一点B满足三角形BOA的面积为9,请直接写出点B的坐标24如图,正方形ABCD的边长是2厘米,E为CD的中点,Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿运动,最终到达点D,若点Q运动时间为秒(1)当时, 平方厘米;当时, 平方厘米;(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求的取值范围;(3)若的面积为平方厘米,直接写出值25某体育拓展中心的门票每张10元,一次性使用考虑到人们的不同需求,也为了吸引更多的顾客,该
15、拓展中心除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法年票分A、B两类:A类年票每张120元,持票者可不限次进入中心,且无需再购买门票;B类年票每张60元,持票者进入中心时,需再购买门票,每次2元(1)小丽计划在一年中花费80元在该中心的门票上,如果只能选择一种购买门票的方式,她怎样购票比较合算?(2)小亮每年进入该中心的次数约20次,他采取哪种购票方式比较合算?(3)小明根据自己进入拓展中心的次数,购买了A类年票,请问他一年中进入该中心不低于多少次?26材料1:我们把形如(、为常数)的方程叫二元一次方程若、为整数,则称二元一次方程为整
16、系数方程若是,的最大公约数的整倍数,则方程有整数解例如方程都有整数解;反过来也成立方程都没有整数解,因为6,3的最大公约数是3,而10不是3的整倍数;4,2的最大公约数是2,而1不是2的整倍数材料2:求方程的正整数解解:由已知得: 设(为整数),则 把代入得:所以方程组的解为 , 根据题意得:解不等式组得0所以的整数解是1,2,3所以方程的正整数解是:,根据以上材料回答下列问题:(1)下列方程中: , , , , , 没有整数解的方程是 (填方程前面的编号);(2)仿照上面的方法,求方程的正整数解;(3)若要把一根长30的钢丝截成2长和3长两种规格的钢丝(两种规格都要有),问怎样截才不浪费材料
17、?你有几种不同的截法?(直接写出截法,不要求解题过程)27阅读理解:例1解方程|x|2,因为在数轴上到原点的距离为2的点对应的数为2,所以方程|x|2的解为x2例2解不等式|x1|2,在数轴上找出|x1|2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为1或3,所以方程|x1|2的解为x1或x3,因此不等式|x1|2的解集为x1或x3参考阅读材料,解答下列问题:(1)方程|x2|3的解为 ;(2)解不等式:|x2|1(3)解不等式:|x4|+|x+2|8(4)对于任意数x,若不等式|x+2|+|x4|a恒成立,求a的取值范围28若关于x的方程ax+b0(a0)的解与关于y的方程
18、cy+d0(c0)的解满足1xy1,则称方程ax+b0(a0)与方程cy+d0(c0)是“友好方程”例如:方程2x10的解是x0.5,方程y10的解是y1,因为1xy1,方程2x10与方程y10是“友好方程”(1)请通过计算判断方程2x95x2与方程5(y1)2(1y)342y是不是“友好方程”(2)若关于x的方程3x3+4(x1)0与关于y的方程+y2k+1是“友好方程”,请你求出k的最大值和最小值29如图,在平面直角坐标系中,已知ABC,点A的坐标是(4,0),点B的坐标是(2,3),点C在x轴的负半轴上,且AC=6.(1)直接写出点C的坐标.(2)在y轴上是否存在点P,使得SPOB=SA
19、BC若存在,求出点P的坐标;若不存在,请说明理由.(3)把点C往上平移3个单位得到点H,作射线CH,连接BH,点M在射线CH上运动(不与点C、H重合).试探究HBM,BMA,MAC之间的数量关系,并证明你的结论.30阅读以下内容:已知有理数m,n满足m+n3,且求k的值三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组,再求k的值(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组时,可以用73消去未知数x,也可以用2+5消去未知数y求a和b的值【参考答案】*试卷处理标记,请
20、不要删除一、解答题1(1)E(3,2)见解析;,理由见解析;(2)OD+OA2AM或OAOD2AM【分析】(1)过点E作EHy轴于H证明DOAAHE(AAS)可得结论证明BOMEHM(AAS)可得结论是定值,证明BOMEHM可得结论(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论【详解】解:(1)过点E作EHy轴于HA(0,3),B(3,0),D(5,0),OAOB3,OD5,AODAHEDAE90,DAO+EAH90,EAH+AEH90,DAOAEH,DOAAHE(AAS),AHOD5,EHOA3,OHAHOA2,E(3,2)EHy轴,E
21、HOBOH90,BMOEMH,OBEH3,BOMEHM(AAS),BMEM结论:理由:DOAAHE,ODAH,OAOB,BDOH,BOMEHM,OMMH,OMOHBD(2)结论:OA+OD2AM或OAOD2AM理由:当点D在点B左侧时,BOMEHM,DOAAHEOM=MH,OD=AHOH=2OM,ODOB=AHOABD=OHBD2OM,ODOA2(AMAO),OD+OA2AM当点D在点B右侧时,过点E作EHy轴于点HAODAHEDAE90,DAO+EAH90,EAH+AEH90,DAOAEH,AD=AEDOAAHE(AAS),EH=AO=3=OB,OD=AHEHOBOH90,BMOEMH,OB
22、EH3,BOMEHM(AAS),OMMHOAOD= OAAH=OH=OMMH=2MH=2(AMAH)=2(AMOD)整理可得OAOD2AM综上:OA+OD2AM或OAOD2AM【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键2(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FLMN,HRPQ,运用平行线性质和角
23、平分线定义即可得出答案;(4)根据平移性质可得DADF,DDEEAF5cm,再结合DEEFDF35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:当BCDE时,当BCEF时,当BCDF时,分别求出旋转角度后,列方程求解即可【详解】(1)如图1,在DEF中,EDF90,DFE30,DEF60,ED平分PEF,PEF2PED2DEF260120,PQMN,MFE180PEF18012060,MFDMFEDFE603030,MFDDFE,FD平分EFM;(2)如图2,过点E作EKMN,BAC45,KEABAC45,PQMN,EKMN,PQEK,PDED
24、EKDEFKEA,又DEF60PDE604515,故答案为:15;(3)如图3,分别过点F、H作FLMN,HRPQ,LFABAC45,RHGQGH,FLMN,HRPQ,PQMN,FLPQHR,QGFGFL180,RHFHFLHFALFA,FGQ和GFA的角平分线GH、FH相交于点H,QGHFGQ,HFAGFA,DFE30,GFA180DFE150,HFAGFA75,RHFHFLHFALFA754530,GFLGFALFA15045105,RHGQGHFGQ(180105)37.5,GHFRHGRHF37.53067.5;(4)如图4,将DEF沿着CA方向平移至点F与A重合,平移后的得到DEA,
25、DADF,DDEEAF5cm,DEEFDF35cm,DEEFDAAFDD351045(cm),即四边形DEAD的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:BCDE时,如图5,此时ACDF,CAEDFE30,3t30,解得:t10;BCEF时,如图6,BCEF,BAEB45,BAMBAEEAM454590,3t90,解得:t30;BCDF时,如图7,延长BC交MN于K,延长DF交MN于R,DRMEAMDFE453075,BKADRM75,ACK180ACB90,CAK90BKA15,CAE180EAMCAK1804515120,3t120,解得
26、:t40,综上所述,ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与DEF的一条边平行【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键3(1)30;(2)DEF+2CDF150,理由见解析;(3)【分析】(1)由非负性可求,的值,由平行线的性质和外角性质可求解;(2)过点E作直线EHAB,由角平分线的性质和平行线的性质可求DEF180302x1502x,由角的数量可求解;(3)由平行线的性质和外角性质可求PMB2Q+PCD,CPM2Q,即可求解【详解】解:(1)+(60)20,30,60,ABCD,AMNMND60,AM
27、NB+BEM60,BEM603030;(2)DEF+2CDF150理由如下:过点E作直线EHAB,DF平分CDE,设CDFEDFx;EHAB,DEHEDC2x,DEF180302x1502x;DEF1502CDF,即DEF+2CDF150;(3)如图3,设MQ与CD交于点E,MQ平分BMT,QC平分DCP,BMT2PMQ,DCP2DCQ,ABCD,BMEMEC,BMPPND,MECQ+DCQ,2MEC2Q+2DCQ,PMB2Q+PCD,PNDPCD+CPMPMB,CPM2Q,Q与CPM的比值为,故答案为:【点睛】本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键4(1)65;(2
28、);(3)2nM+BED=360【分析】(1)首先作EGAB,FHAB,连结MF,利用平行线的性质可得ABE+CDE=260,再利用角平分线的定义得到ABF+CDF=130,从而得到BFD的度数,再根据角平分线的定义和三角形外角的性质可求M的度数;(2)先由已知得到ABE=6ABM,CDE=6CDM,由(1)得ABE+CDE=360-BED,M=ABM+CDM,等量代换即可求解;(3)由(2)的方法可得到2nM+BED=360【详解】解:(1)如图1,作,连结,和的角平分线相交于,、分别是和的角平分线,;(2)如图1,与两个角的角平分线相交于点,;(3)由(2)结论可得,则【点睛】本题主要考查
29、了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质5(1)PMMN,理由见解析;EPB的度数为125;(2)APM +QMN=90或APM -QMN=90【分析】(1)利用平行线的性质得到APM=PMQ,再根据已知条件可得到PMMN;过点N作NHCD,利用角平分线的定义以及平行线的性质求得MNH=35,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决【详解】解:(1)PMMN,理由见解析:AB/CD,APM=PMQ,APM+QMN=90,PMQ +QMN=90,PMMN;过点N作NHCD,AB/CD,AB/ NHCD,QMN=MNH,EPA
30、=ENH,PA平分EPM,EPA= MPA,APM+QMN=90,EPA +MNH=90,即ENH +MNH=90,MNQ +MNH +MNH=90,MNQ=20,MNH=35,EPA=ENH=MNQ +MNH=55,EPB=180-55=125,EPB的度数为125;(2)当点M,N分别在射线QC,QF上时,如图:PMMN,AB/CD,PMQ +QMN=90,APM=PMQ, APM +QMN=90;当点M,N分别在射线QC,线段PQ上时,如图:PMMN,AB/CD,PMN=90,APM=PMQ, PMQ -QMN=90,APM -QMN=90;当点M,N分别在射线QD,QF上时,如图:PM
31、MN,AB/CD,PMQ +QMN=90,APM+PMQ=180, APM+90-QMN=180,APM -QMN=90;综上,APM +QMN=90或APM -QMN=90【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键6(1)APC=+,理由见解析;(2)APC=-或APC=-;(3)58【分析】(1)过点P作PEAB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PEAB,QFAB,根据平行线的判
32、定与性质及角的和差即可求解【详解】解:(1)如图2,过点P作PEAB,ABCD,PEABCD,APE=,CPE=,APC=APE+CPE=+(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,ABCD,PAB=,1=PAB=,1=APC+PCD,PCD=,=APC+,APC=-;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,ABCD,PCD=,2=PCD=,2=PAB+APC,PAB=,=+APC,APC=-;(3)如图3,过点P,Q分别作PEAB,QFAB,ABCD,ABQFPECD,BAP=APE,PCD=EPC,APC=116,BAP+PCD=116,AQ平分
33、BAP,CQ平分PCD,BAQ=BAP,DCQ=PCD,BAQ+DCQ=(BAP+PCD)=58,ABQFCD,BAQ=AQF,DCQ=CQF,AQF+CQF=BAQ+DCQ=58,AQC=58【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键7(1),1;(2)两位正整数为39,28,17,的最大值为;(3);【分析】(1)仿照样例进行计算即可;(2)由题设可以看出交换前原数的十位上数字为a,个位上数字为b,则原数可以表示为,交换后十位上数字为b,个位上数字为a,则交换后数字可以表示为,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为
34、54”确定出a与b的关系式,进而求出所有的两位数,然后求解确定出的最大值即可;(3)根据样例分解计算即可【详解】解:(1),;,故答案为:;1;(2)由题意可得:交换后的数减去交换前的数的差为:,或或,t为39,28,17;39139313,;2812821447,;17117,;的最大值(3);故答案为:;【点睛】本题主要考查了有理数的运算,理解最佳分解的定义,并将其转化为有理数的运算是解题的关键8(1),;(2);【分析】(1)根据规律可得第5个算式;根据规律可得第n个算式;(2)根据运算规律可得结果利用非负数的性质求出与的值,代入原式后拆项变形,抵消即可得到结果【详解】(1)根据规律得:
35、第5个等式是,第n个等式是;(2),;为最小的正整数,原式,【点睛】本题主要考查了数字的变化规律,发现规律,运用规律是解答此题的关键9(1);(2).【分析】根据发现的规律得出结果即可;根据发现的规律将所求式子变形,约分即可得到结果【详解】(1)设为A,为B,原式=(1+A)B(1+B)A=B+ABAAB=BA=;(2)设为A,为B,原式=(1+A)B(1+B)A=B+ABAAB=BA=【点睛】考查了有理数的混合运算,熟练掌握运算法则是解本题的关键10(1)48;(2)28【分析】(1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可(2)根据
36、题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可【详解】解:(1)第一步:,能确定110592的立方根是个两位数第二步:的个位数是2,能确定110592的立方根的个位数是8第三步:如果划去110592后面的三位592得到数110,而,则,可得,由此能确定110592的立方根的十位数是4,因此110592的立方根是48;(2)第一步:,能确定21952的立方根是个两位数第二步:的个位数是2,能确定21952的立方根的个位数是8第三步:如果划去21952后面的三位952得到数21,而,则,可得,由此能确定21952的立方根的十位数是2,因此21952的
37、立方根是28即,故答案为:28【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度11(1);(2);(3).【分析】仿照阅读材料中的方法求出所求即可【详解】解:(1)根据得:(2)设,则,即:(3)设,则,即:同理可求【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键12(1)5;(2)5或1;(3)1+y-2x;(4)t1=3;t2=【分析】(1)根据题中的新运算列出算式,计算即可得到结果;(2)根据题中的新运算列出方程,解方程即可得到结果;(3)根据题中的新运算列出代数式,根据数轴得出x、y的取值范围进行化简即
38、可;(4)根据A、B在数轴上的移动方向和速度可分别用代数式表示出数和,再根据(2)的解题思路即可得到结果【详解】解:(1); (2)依题意得:,化简得:,所以或,解得:x=5或x=1; (3)由数轴可知:0x1,y0,所以= =(4)依题意得:数a=1+t,b=3t; 因为,所以,化简得:,解得:t=3或t=,所以当时,的值为3或【点睛】本题主要考查了定义新运算、有理数的混合运算和解一元一次方程,根据定义新运算列出关系式是解题的关键13(1)(-2,0);(2)4秒;(0,)或(-3,)【分析】(1)根据BC=AE=3,OA=1,推出OE=2,可得结论(2)判断出PB=CD,即可得出结论;根据
39、PEA的面积以及AE求出点P到AE的距离,结合点P的路线可得坐标【详解】解:(1)C(-3,2),A(1,0),BC=3,OA=1,BC=AE=3,OE=AE-AO=2,E(-2,0);(2)点C的坐标为(-3,2)BC=3,CD=2,点P的横坐标与纵坐标互为相反数;点P在线段BC上,PB=CD=2,即t=(2+2)1=4;当t=4秒时,点P的横坐标与纵坐标互为相反数;PEA的面积为2,A(1,0),E(-2,0),AE=3,设点P到AE的距离为h,h=,即点P到AE的距离为,点P的坐标为(0,)或(-3,)【点睛】本题考查坐标与图形变化-平移,三角形的面积等知识,解本题的关键是由线段和部分点的坐标,得出其它点的坐标14(1)见解析;(2)10;(3)【分析】(1)过点E作EFCD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E作HECD,设 由(1)得ABCD,则ABCDHE,由平行线的性质,得出再由平分,得出则,则可列出关于x和y的方程,即可求得x,即的度数;(3)过点N作NPCD,过点M作QMCD,由(1)得ABCD,则N