收藏 分销(赏)

人教版七年级数学下册期末几何压轴题试题(带答案)-(一).doc

上传人:天**** 文档编号:4916113 上传时间:2024-10-20 格式:DOC 页数:46 大小:2.24MB
下载 相关 举报
人教版七年级数学下册期末几何压轴题试题(带答案)-(一).doc_第1页
第1页 / 共46页
人教版七年级数学下册期末几何压轴题试题(带答案)-(一).doc_第2页
第2页 / 共46页
人教版七年级数学下册期末几何压轴题试题(带答案)-(一).doc_第3页
第3页 / 共46页
人教版七年级数学下册期末几何压轴题试题(带答案)-(一).doc_第4页
第4页 / 共46页
人教版七年级数学下册期末几何压轴题试题(带答案)-(一).doc_第5页
第5页 / 共46页
点击查看更多>>
资源描述

1、一、解答题1如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CBy轴交y轴负半轴于B(0,b),且|a3|+(b+4)20,S四边形AOBC16(1)求点C的坐标(2)如图2,设D为线段OB上一动点,当ADAC时,ODA的角平分线与CAE的角平分线的反向延长线交于点P,求APD的度数;(点E在x轴的正半轴)(3)如图3,当点D在线段OB上运动时,作DMAD交BC于M点,BMD、DAO的平分线交于N点,则点D在运动过程中,N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由2已知点C在射线OA上(1)如图,CDOE,若AOB90,OCD120,求BOE的

2、度数;(2)在中,将射线OE沿射线OB平移得OE(如图),若AOB,探究OCD与BOE的关系(用含的代数式表示)(3)在中,过点O作OB的垂线,与OCD的平分线交于点P(如图),若CPO90,探究AOB与BOE的关系3已知:如图,直线AB/CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN (1)点M,N分别在射线QC,QF上(不与点Q重合),当APM+QMN=90时,试判断PM与MN的位置关系,并说明理由;若PA平分EPM,MNQ=20,求EPB的度数(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图

3、中画出满足PMMN条件的图形,并直接写出此时APM与QMN的关系(注:此题说理时不能使用没有学过的定理)4如图,直线,点是、之间(不在直线,上)的一个动点(1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由;(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值;(3)如图3,若点是下方一点,平分, 平分,已知,求的度数5如图,EBF50,点C是EBF的边BF上一点动点A从点B出发在EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线ADBC(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻

4、,使得AD平分EAC?(2)假设存在AD平分EAC,在此情形下,你能猜想B和ACB之间有何数量关系?并请说明理由;(3)当ACBC时,直接写出BAC的度数和此时AD与AC之间的位置关系6如图1,已知直线mn,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即OPA=QPB(1)如图1,若OPQ=82,求OPA的度数;(2)如图2,若AOP=43,BQP=49,求OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在

5、两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 OPQROP试判断OPQ和ORQ的数量关系,并说明理由7定义:如果,那么称b为n的布谷数,记为.例如:因为,所以,因为,所以.(1)根据布谷数的定义填空:g(2)=_,g(32)=_.(2)布谷数有如下运算性质:若m,n为正整数,则,.根据运算性质解答下列各题:已知,求和的值;已知.求和的值.8观察下列各式,并用所得出的规律解决问题:(1),由此可见,被开方数的小数点每向右移动_位,其算术平方根的小数点向_移动_位(2)已知,则_;_(3),小数点的变化规律是_(4)已知,则_9给定一个十进制下的自然数,对于

6、每个数位上的数,求出它除以的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数的“模二数”,记为.如.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定:与相加得;与相加得与相加得,并向左边一位进.如的“模二数”相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)的值为_ ,的值为_ (2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如,因为,所以,即与满足“模二相加不变”.判断这三个数中哪些与“模二相加不变”,并说明理由;与“模二相加不变”的两位数有_个10阅读材料:求的值

7、解:设,将等式的两边同乘以2,得,用得,即即请仿照此法计算:(1)请直接填写的值为_;(2)求值;(3)请直接写出的值11对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,=3(1)仿照以上方法计算:=_;=_(2)若,写出满足题意的x的整数值_如果我们对a连续求根整数,直到结果为1为止例如:对10连续求根整数2次=1,这时候结果为1(3)对100连续求根整数,_次之后结果为1(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是_12我们知道,任意一个正整数n都可以进行这样的分解:(p,q是正整数,且),在n的所有这种分解中,如果p,q两因数之差的绝对值

8、最小,我们就称pq是n的完美分解并规定:例如18可以分解成118,29或36,因为1819263,所以36是18的完美分解,所以F(18)(1)F(13) ,F(24) ;(2)如果一个两位正整数t,其个位数字是a,十位数字为,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F(t)的最大值13如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,点C的坐标为(3,2)(1)直接写出点E的坐标 ;(2)在四边形ABCD中,点P从点O出发,沿OB

9、BCCD移动,若点P的速度为每秒1个单位长度,运动时间为t秒,请解决以下问题;当t为多少秒时,点P的横坐标与纵坐标互为相反数;当t为多少秒时,三角形PEA的面积为2,求此时P的坐标14已知,定点,分别在直线,上,在平行线,之间有一动点(1)如图1所示时,试问,满足怎样的数量关系?并说明理由(2)除了(1)的结论外,试问,还可能满足怎样的数量关系?请画图并证明(3)当满足,且,分别平分和,若,则_猜想与的数量关系(直接写出结论)15如图,平面直角坐标系中,点的坐标是,点在轴的正半轴上,的面积等于18(1)求点的坐标;(2)如图,点从点出发,沿轴正方向运动,点运动至点停止,同时点从点出发,沿轴正方

10、向运动,点运动至点停止,点、点的速度都为每秒1个单位,设运动时间为秒,的面积为,求用含的式子表示,并直接写出的取值范围;(3)在(2)的条件下,过点作,连接并延长交于,连接交于点,若,求值及点的坐标16使方程(组)与不等式(组)同时成立的末知数的值称为此方程(组)和不等式(组)的“理想解”例:已知方程2x31与不等式x+30,当x2时,2x32231,x+32+350同时成立,则称x2是方程2x31与不等式x+30的“理想解”(1)已知,2(x+3)4,3,试判断方程2x+31的解是否是它们中某个不等式的“理想解”,写出过程;(2)若是方程x2y4与不等式的“理想解”,求x0+2y0的取值范围

11、17在平面直角坐标系中,已知长方形,点,.(1)如图,有一动点在第二象限的角平分线上,若,求的度数;(2)若把长方形向上平移,得到长方形.在运动过程中,求的面积与的面积之间的数量关系;若,求的面积与的面积之比. 18如图,在平面直角坐标系中,点,将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为,连接交y轴于点C,交x轴于点D(1)线段可以由线段AB经过怎样的平移得到?并写出,的坐标;(2)求四边形的面积;(3)P为y轴上的一动点(不与点C重合),请探究与的数量关系,给出结论并说明理由19我国传统数学名著九章算术记载:“今有牛五、羊二,直金十九两

12、;牛二、羊五,直金十六两问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用20两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能20历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示例如f(x)x23x5,把x某数时多项式的值用f(某数)来表示例如x1时多项式x23x5的值记为f(1)(1)23(1)57.(1)已知g(x)2x23x1,分别求出g(1)和g(2);(2)已知

13、h(x)ax32x2ax6,当h()a,求a的值;(3)已知f(x)2(a,b为常数),当k无论为何值,总有f(1)0,求a,b的值21已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元次,B型车每辆需租金240元次,请选出最省钱的租车方案,并求出最少租车费22在平面直角坐标系中,点、在坐标

14、轴上,其中、满足(1)求、两点的坐标;(2)将线段平移到,点的对应点为,如图1所示,若三角形的面积为,求点的坐标;(3)平移线段到,若点、也在坐标轴上,如图2所示为线段上的一动点(不与、重合),连接、平分,求证:23新定义,若关于,的二元一次方程组的解是,关于,的二元一次方程组的解是,且满足,则称方程组的解是方程组的模糊解关于,的二元一次方程组的解是方程组的模糊解,则的取值范围是_24七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图比赛中,所有同学均按要求一对一连线,无多连、少连(1)分数5,10,15,20中,每人得分不可能是_分(2)七年(1)班有4人全错,其余成员中,满分人数是

15、未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数问(1)班有多少人得满分?若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?25学校组织名同学和名教师参加校外学习交流活动现打算选租大、小两种客车,大客车载客量为人/辆,小客车载客量为人/辆(1)学校准备租用辆客车,有几种租车方案?(2)在(1)的条件下,若大客车租金为元/辆,小客车租金为元/辆,哪种租车方案最省钱?(3)学校临时增加名学生和名教师参加活动,每辆大客车有2名教师带队,每辆小客车至少有名教师带队.同学先坐满大客车,再依次坐满小客车,最后一辆小客车至少要有人,请你帮助设

16、计租车方案26如图,在平面直角坐标系中,轴,轴,且,动点从点出发,以每秒的速度,沿路线向点运动;动点从点出发,以每秒的速度,沿路线向点运动若两点同时出发,其中一点到达终点时,运动停止()直接写出三个点的坐标;()设两点运动的时间为秒,用含的式子表示运动过程中三角形的面积;()当三角形的面积的范围小于16时,求运动的时间的范围27某加工厂用52500元购进A、B两种原料共40吨,其中原料A每吨1500元,原料B每吨1000元由于原料容易变质,该加工厂需尽快将这批原料运往有保质条件的仓库储存经市场调查获得以下信息:将原料运往仓库有公路运输与铁路运输两种方式可供选择,其中公路全程120千米,铁路全程

17、150千米;两种运输方式的运输单价不同(单价:每吨每千米所收的运输费);公路运输时,每吨每千米还需加收1元的燃油附加费;运输还需支付原料装卸费:公路运输时,每吨装卸费100元;铁路运输时,每吨装卸费220元(1)加工厂购进A、B两种原料各多少吨?(2)由于每种运输方式的运输能力有限,都无法单独承担这批原料的运输任务加工厂为了尽快将这批原料运往仓库,决定将A原料选一种方式运输,B原料用另一种方式运输,哪种方案运输总花费较少?请说明理由28在平面直角坐标系中,点,的坐标分别为,且,满足方程为二元一次方程(1)求,的坐标(2)若点为轴正半轴上的一个动点如图1,当时,与的平分线交于点,求的度数;如图2

18、,连接,交轴于点若成立设动点的坐标为,求的取值范围29如图,在平直角坐标系中,ABO的三个顶点为A(a,b),B(a,3b),O(0,0),且满足|b2|0,线段AB与y轴交于点C(1)求出A,B两点的坐标;(2)求出ABO的面积;(3)如图,将线段AB平移至B点的对应点落在x轴的正半轴上时,此时A点的对应点为,记的面积为S,若24S32,求点的横坐标的取值范围30已知,在平面直角坐标系中,ABx轴于点B,点A满足,平移线段AB使点A与原点重合,点B的对应点为点C(1)则a,b,点C坐标为;(2)如图1,点D(m,n)在线段BC上,求m,n满足的关系式;(3)如图2,E是线段OB上一动点,以O

19、B为边作BOGAOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值 【参考答案】*试卷处理标记,请不要删除一、解答题1(1) C(5,4);(2)90;(3)见解析.【详解】分析:(1)利用非负数的和为零,各项分别为零,求出a,b即可;(2)用同角的余角相等和角平分线的意义即可;(3)利用角平分线的意义和互余两角的关系简单计算证明即可详解:(1)(a3)2+|b+4|=0,a3=0,b+4=0,a=3,b=4,A(3,0),B(0,4),OA=3,OB=4,S四边形AOBC=160.5(OA+BC)OB=16,0.5(

20、3+BC)4=16,BC=5,C是第四象限一点,CBy轴,C(5,4);(2)如图,延长CA,AF是CAE的角平分线,CAF=0.5CAE,CAE=OAG,CAF=0.5OAG,ADAC,DAO+OAG=PAD+PAG=90,AOD=90,DAO+ADO=90,ADO=OAG,CAF=0.5ADO,DP是ODA的角平分线,ADO=2ADP,CAF=ADP,CAF=PAG,PAG=ADP,APD=180(ADP+PAD)=180(PAG+PAD)=18090=90即:APD=90(3)不变,ANM=45理由:如图,AOD=90,ADO+DAO=90,DMAD,ADO+BDM=90,DAO=BDM

21、,NA是OAD的平分线,DAN=0.5DAO=0.5BDM,CBy轴,BDM+BMD=90,DAN=0.5(90BMD),MN是BMD的角平分线,DMN=0.5BMD,DAN+DMN=0.5(90BMD)+0.5BMD=45在DAM中,ADM=90,DAM+DMA=90,在AMN中,ANM=180(NAM+NMA)=180(DAN+DAM+DMN+DMA)=180(DAN+DMN)+(DAM+DMA) =180(45+90)=45,D点在运动过程中,N的大小不变,求出其值为45点睛:此题是四边形综合题,主要考查了非负数的性质,四边形面积的计算方法,角平分线的意义,解本题的关键是用整体的思想解决

22、问题,也是本题的难点.2(1)150;(2)OCD+BOE=360-;(3)AOB=BOE【分析】(1)先根据平行线的性质得到AOE的度数,再根据直角、周角的定义即可求得BOE的度数;(2)如图,过O点作OFCD,根据平行线的判定和性质可得OCD、BOE的数量关系;(3)由已知推出CPOB,得到AOB+PCO=180,结合角平分线的定义可推出OCD=2PCO=360-2AOB,根据(2)OCD+BOE=360-AOB,进而推出AOB=BOE【详解】解:(1)CDOE,AOE=OCD=120,BOE=360-AOE-AOB=360-90-120=150;(2)OCD+BOE=360-证明:如图,

23、过O点作OFCD,CDOE,OFOE,AOF=180-OCD,BOF=EOO=180-BOE,AOB=AOF+BOF=180-OCD+180-BOE=360-(OCD+BOE)=,OCD+BOE=360-;(3)AOB=BOE证明:CPO=90,POCP,POOB,CPOB,PCO+AOB=180,2PCO=360-2AOB,CP是OCD的平分线,OCD=2PCO=360-2AOB,由(2)知,OCD+BOE=360-=360-AOB,360-2AOB+BOE=360-AOB,AOB=BOE【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的

24、关键3(1)PMMN,理由见解析;EPB的度数为125;(2)APM +QMN=90或APM -QMN=90【分析】(1)利用平行线的性质得到APM=PMQ,再根据已知条件可得到PMMN;过点N作NHCD,利用角平分线的定义以及平行线的性质求得MNH=35,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决【详解】解:(1)PMMN,理由见解析:AB/CD,APM=PMQ,APM+QMN=90,PMQ +QMN=90,PMMN;过点N作NHCD,AB/CD,AB/ NHCD,QMN=MNH,EPA=ENH,PA平分EPM,EPA= MPA,APM+QMN=90,EPA +MNH=90,即

25、ENH +MNH=90,MNQ +MNH +MNH=90,MNQ=20,MNH=35,EPA=ENH=MNQ +MNH=55,EPB=180-55=125,EPB的度数为125;(2)当点M,N分别在射线QC,QF上时,如图:PMMN,AB/CD,PMQ +QMN=90,APM=PMQ, APM +QMN=90;当点M,N分别在射线QC,线段PQ上时,如图:PMMN,AB/CD,PMN=90,APM=PMQ, PMQ -QMN=90,APM -QMN=90;当点M,N分别在射线QD,QF上时,如图:PMMN,AB/CD,PMQ +QMN=90,APM+PMQ=180, APM+90-QMN=1

26、80,APM -QMN=90;综上,APM +QMN=90或APM -QMN=90【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键4(1)见解析;(2);(3)75【分析】(1)根据平行线的性质、余角和补角的性质即可求解(2)根据平行线的性质、对顶角的性质和平角的定义解答即可(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可【详解】解:(1)C=1+2,证明:过C作lMN,如下图所示,lMN,4=2(两直线平行,内错角相等),lMN,PQMN,lPQ,3=1(两直线平行,内错角相等),3+4

27、=1+2,C=1+2;(2)BDF=GDF,BDF=PDC,GDF=PDC,PDC+CDG+GDF=180,CDG+2PDC=180,PDC=90-CDG,由(1)可得,PDC+CEM=C=90,AEN=CEM,(3)设BD交MN于JBC平分PBD,AM平分CAD,PBC=25,PBD=2PBC=50,CAM=MAD,PQMN,BJA=PBD=50,ADB=AJB-JAD=50-JAD=50-CAM,由(1)可得,ACB=PBC+CAM,ACB+ADB=PBC+CAM+50-CAM=25+50=75【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系5(1)

28、是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;(2)根据角平分线可得EADCAD,由平行线的性质可得BEAD,ACBCAD,则有ACBB;(3)由ACBC,有ACB90,则可求BAC40,由平行线的性质可得ACAD【详解】解:(1)是,理由如下:要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;故答案为:是;(2)BACB,理由如下:AD平分EAC,EADCAD,ADBC,BEAD,ACB

29、CAD,BACB(3)ACBC,ACB90,EBF50,BAC40,ADBC,ADAC【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键6(1)49,(2)44,(3)OPQ=ORQ【分析】(1)根据OPA=QPB可求出OPA的度数;(2)由AOP=43,BQP=49可求出OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:OPQ=AOP+BQP,ORQ=DOR+RQC,从而OPQ=ORQ【详解】解:(1)OPA=QPB,OPQ=82,OPA=(180-OPQ)=(180-82)=49,(2)作PCm,mn,mPCn,AOP=OPC=43,BQP

30、=QPC=49,OPQ=OPC+QPC=43+49=92,OPA=(180-OPQ)=(180-92)44,(3)OPQ=ORQ理由如下:由(2)可知:OPQ=AOP+BQP,ORQ=DOR+RQC,入射光线与平面镜的夹角等于反射光线与平面镜的夹角,AOP=DOR,BQP=RQC,OPQ=ORQ【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的7(1)1;5;(2)3.807,0.807;.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)根据布谷数的运算性质, g(14)=g(27)=g(2)+g(

31、7),再代入数值可得解;根据布谷数的运算性质, 先将两式化为,再代入求解.【详解】解:(1)g(2)=g(21)=1,g(32)=g(25)=5;故答案为1,32;(2)g(14)=g(27)=g(2)+g(7),g(7)=2.807,g(2)=1,g(14)=3.807;g(4)=g(22)=2,=g(7)-g(4)=2.807-2=0.807;故答案为3.807,0.807;.;.【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键8(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)

32、移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果【详解】解:(1),由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位故答案为:两;右;一;(2)已知,则;故答案为:12.25;0.3873;(3),小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4),y=-0.01【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键9(1)1011,1101;(2)12,65,97,见

33、解析,38【分析】(1) 根据“模二数”的定义计算即可;(2) 根据“模二数”和模二相加不变”的定义,分别计算和12+23,65+23,97+23的值,即可得出答案设两位数的十位数字为a,个位数字为b,根据a、b的奇偶性和“模二数”和模二相加不变”的定义进行讨论,从而得出与“模二相加不变”的两位数的个数【详解】解: (1) ,故答案为:, ,与满足“模二相加不变”.,与不满足“模二相加不变”.,与满足“模二相加不变”当此两位数小于77时,设两位数的十位数字为a,个位数字为b,;当a为偶数,b为偶数时,与满足“模二相加不变”有12个(28、48、68不符合)当a为偶数,b为奇数时,与不满足“模二

34、相加不变”.但27、47、67、29、49、69符合共6个当a为奇数,b为奇数时,与不满足“模二相加不变”.但17、37、57、19、39、59也不符合当a为奇数,b为偶数时,与满足“模二相加不变”有16个,(18、38、58不符合) 当此两位数大于等于77时,符合共有4个综上所述共有12+6+16+4=38故答案为:38【点睛】本题考查新定义,数字的变化类,认真观察、仔细思考,分类讨论的数学思想是解决这类问题的方法能够理解定义是解题的关键10(1)15;(2);(3)【分析】(1)先计算乘方,即可求出答案;(2)根据题目中的运算法则进行计算,即可求出答案;(3)根据题目中的运算法则进行计算,

35、即可求出答案;【详解】解:(1);故答案为:15;(2)设,把等式两边同时乘以5,得,由,得:,;(3)设,把等式乘以10,得:,把+,得:,【点睛】本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键11(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1)先估算和的大小,再由并新定义可得结果;(2)根据定义可知x4,可得满足题意的x的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案【详解】解:(1)22=4, 62=36,52

36、=25,56,=2=2,=5,故答案为2,5;(2)12=1,22=4,且1,x=1,2,3,故答案为1,2,3;(3)第一次:=10,第二次:=3,第三次:=1,故答案为3;(4)最大的正整数是255,理由是:=15,=3,=1,对255只需进行3次操作后变为1,=16,=4,=2,=1,对256只需进行4次操作后变为1,只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力12(1),(2)所以和谐数为15,26,37,48,59;(3)F(t)的最大值是【分析】

37、(1)根据题意,按照新定义的法则计算即可.(2)根据新定义的”和谐数”定义,将数用a,b表示列出式子解出即可.(3)根据(2)中计算的结果求出最大即可.【详解】解:(1)F(13),F(24);(2)原两位数可表示为 新两位数可表示为 (且b为正整数 )b=2,a=5; b=3,a=6, b=4,a=7,b=5,a=8 b=6,a=9所以和谐数为15,26,37,48,59(3)所有“和谐数”中,F(t)的最大值是【点睛】本题为新定义的题型,关键在于读懂题意,按照规定解题.13(1)(-2,0);(2)4秒;(0,)或(-3,)【分析】(1)根据BC=AE=3,OA=1,推出OE=2,可得结论

38、(2)判断出PB=CD,即可得出结论;根据PEA的面积以及AE求出点P到AE的距离,结合点P的路线可得坐标【详解】解:(1)C(-3,2),A(1,0),BC=3,OA=1,BC=AE=3,OE=AE-AO=2,E(-2,0);(2)点C的坐标为(-3,2)BC=3,CD=2,点P的横坐标与纵坐标互为相反数;点P在线段BC上,PB=CD=2,即t=(2+2)1=4;当t=4秒时,点P的横坐标与纵坐标互为相反数;PEA的面积为2,A(1,0),E(-2,0),AE=3,设点P到AE的距离为h,h=,即点P到AE的距离为,点P的坐标为(0,)或(-3,)【点睛】本题考查坐标与图形变化-平移,三角形

39、的面积等知识,解本题的关键是由线段和部分点的坐标,得出其它点的坐标14(1)AEP+PFC=EPF;(2)AEP+EPF+PFC=360;(3)150或30;EPF+2EQF=360或EPF=2EQF【分析】(1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,满足数量关系为:;(2)当点在的右侧时,满足数量关系为:;(3)若当点在的左侧时,;当点在的右侧时,可求得;结合可得,由,得出;可得,由,得出【详解】解:(1)如图1,过点作,;(2)如图2,当点在的右侧时,满足数量关系为:;过点作,;(3)如图3,若当点在的左侧时,分别平分和,;如图4,当点在的右

40、侧时,;故答案为:或30;由可知:,;,综合以上可得与的数量关系为:或【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键15(1);(2)();(3)的值为4,点的坐标是【分析】(1)根据AOB的面积可求得OA的长,即可求得点A的坐标;(2)由题意可分别得,由三角形面积公式即可得结果,由点Q只在线段OB上运动,从而可得t的取值范围;(3)利用割补方法,由则可求得t的值;连接OE,由可求得OF的长,从而求得点F的坐标【详解】(1)B(-6,0),OB=6,OA=6 ,(2),()(3),解得,则,连接,如图,点坐标为综上所述:的值为4,点的坐标是【点睛】本题考查了代数式,三角形面积,用到了割补方法,也是本题的关键和难点16(1)2x+31的解是不等式3的理想解,过程见解析;(2)2x0+2y08【分析】(1)解方程2x+31的解为x1,分别代入三个不等式检验即可得到答

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服