1、一一、离散型随机变量的分布律离散型随机变量的分布律二二、常见离散型随机变量的概率分布常见离散型随机变量的概率分布三三、小结小结第二节 离散型随机变量 及其概率分布说明说明 一、离散型随机变量的分布律定义定义离散型随机变量的分布律也可表示为离散型随机变量的分布律也可表示为解解则有则有例例1二、常见离散型随机变量的概率分布 设随机变量设随机变量 X 只可能取只可能取0与与1两个值两个值,它的分它的分布律为布律为则称则称 X 服从服从(01)分布分布或或两点分布两点分布.1.两点分布两点分布 实例实例1 “抛硬币抛硬币”试验试验,观察正、反两面情况观察正、反两面情况.随机变量随机变量 X 服从服从(
2、01)分布分布.其分布律为其分布律为实例实例2 200件产品中件产品中,有有190件合格品件合格品,10件不合格件不合格品品,现从中随机抽取一件现从中随机抽取一件,那么那么,若规定若规定取得不合格品取得不合格品,取得合格品取得合格品.则随机变量则随机变量 X 服从服从(0 1)分布分布.两点分布是最简单的一种分布两点分布是最简单的一种分布,任何一个只有任何一个只有两种可能结果的随机现象两种可能结果的随机现象,比如新生婴儿是男还是比如新生婴儿是男还是女、明天是否下雨、种籽是否发芽等女、明天是否下雨、种籽是否发芽等,都属于两点都属于两点分布分布.说明说明两点分布随机数两点分布随机数演示演示2.等可
3、能等可能分布(均匀分布)分布(均匀分布)如果随机变量如果随机变量 X 的分布律为的分布律为实例实例 抛掷骰子并记出现的点数为随机变量抛掷骰子并记出现的点数为随机变量 X,则有则有均匀分布随机数均匀分布随机数演示演示将试验将试验 E 重复进行重复进行 n 次次,若各次试验的结果互若各次试验的结果互不影响不影响,即每次试验结果出现的概率都不依赖于其即每次试验结果出现的概率都不依赖于其它各次试验的结果它各次试验的结果,则称这则称这 n 次试验是次试验是相互独立相互独立的的,或称为或称为 n 次次重复独立重复独立试验试验.(1)重复独立试验重复独立试验3.二项分布二项分布(2)n 重重伯努利试验伯努利
4、试验 伯努利资料伯努利资料实例实例1 抛一枚硬币观察得到正面或反面抛一枚硬币观察得到正面或反面.若将硬若将硬币抛币抛 n 次次,就是就是n重伯努利试验重伯努利试验.实例实例2 抛一颗骰子抛一颗骰子n次次,观察是否观察是否“出现出现 1 点点”,就就是是 n重伯努利试验重伯努利试验.(3)二项概率公式二项概率公式且两两互不相容且两两互不相容.称这样的分布为称这样的分布为二项分布二项分布.记为记为二项分布二项分布两点分布两点分布二项分布的图形二项分布的图形二项分布随机数二项分布随机数演示演示例如例如 在相同条件下相互独立地进行在相同条件下相互独立地进行 5 次射击次射击,每每次射击时击中目标的概率
5、为次射击时击中目标的概率为 0.6,则击中目标的次则击中目标的次数数 X 服从服从 b(5,0.6)的二项分布的二项分布.二项分布随机数二项分布随机数演示演示分析分析 这是不放回抽样这是不放回抽样.但由于这批元件的总数很但由于这批元件的总数很大大,且抽查元件的数量相对于元件的总数来说又很且抽查元件的数量相对于元件的总数来说又很小小,因而此抽样可近似当作放回抽样来处理因而此抽样可近似当作放回抽样来处理.例例2解解图示概率分布图示概率分布解解因此因此例例3 有一繁忙的汽车站有一繁忙的汽车站,每天有大量汽车通过每天有大量汽车通过,设设每辆汽车在一天的某段时间内每辆汽车在一天的某段时间内,出事故的概率
6、为出事故的概率为0.0001,在每天的该段时间内有在每天的该段时间内有1000 辆汽车通过辆汽车通过,问问出事故的次数不小于出事故的次数不小于2的概率是多少的概率是多少?设设 1000 辆车通过辆车通过,出事故的次数为出事故的次数为 X,则则解解例例4故所求概率为故所求概率为二项分布二项分布 泊松分布泊松分布4.泊松分布泊松分布 泊松资料泊松资料泊松分布的图形泊松分布的图形泊松分布随机数泊松分布随机数演示演示泊松分布的背景及应用泊松分布的背景及应用二十世纪初卢瑟福和盖克两位科学家在观察二十世纪初卢瑟福和盖克两位科学家在观察与分析放射性物质放出的与分析放射性物质放出的 粒子个数的情况时粒子个数的
7、情况时,他他们做了们做了2608次观察次观察(每次时间为每次时间为7.5秒秒)发现放射发现放射性物质在规定的一段时间内性物质在规定的一段时间内,其放射的粒子数其放射的粒子数X 服从泊松分布服从泊松分布.在生物学在生物学、医学医学、工业统计、保险科学及工业统计、保险科学及公用事业的排队等问题中公用事业的排队等问题中,泊松分布是常见的泊松分布是常见的.例如地震、火山爆发、特大洪水、交换台的电例如地震、火山爆发、特大洪水、交换台的电话呼唤次数等话呼唤次数等,都服从泊松分布都服从泊松分布.电话呼唤次数电话呼唤次数交通事故次数交通事故次数商场接待的顾客数商场接待的顾客数地震地震火山爆发火山爆发特大洪水特
8、大洪水上面我们提到上面我们提到二项分布二项分布 泊松分布泊松分布 设设1000 辆车通过辆车通过,出事故的次数为出事故的次数为 X,则则可利用泊松定理计算可利用泊松定理计算所求概率为所求概率为解解例例4 有一繁忙的汽车站有一繁忙的汽车站,每天有大量汽车通过每天有大量汽车通过,设每辆汽车设每辆汽车,在一天的某段时间内出事故的概率在一天的某段时间内出事故的概率为为0.0001,在每天的该段时间内有在每天的该段时间内有1000 辆汽车通辆汽车通过过,问出事故的次数不小于问出事故的次数不小于2的概率是多少的概率是多少?例例5 为了保证设备正常工作为了保证设备正常工作,需配备适量的维修需配备适量的维修工
9、人工人(工人配备多了就浪费工人配备多了就浪费,配备少了又要影响生配备少了又要影响生产产),现有同类型设备现有同类型设备300台台,各台工作是相互独立的各台工作是相互独立的,发生故障的概率都是发生故障的概率都是0.01.在通常情况下,一台设备在通常情况下,一台设备的故障可由一个人来处理的故障可由一个人来处理(我们也只考虑这种情况我们也只考虑这种情况),问至少需配备多少工人问至少需配备多少工人,才能保证设备发生故障才能保证设备发生故障但不能及时维修的概率小于但不能及时维修的概率小于0.01?解解所需解决的问题所需解决的问题使得使得合理配备维修工人问题合理配备维修工人问题由泊松定理得由泊松定理得故有
10、故有即即个工人个工人,才能保证设备发生故障但不能及时维修的才能保证设备发生故障但不能及时维修的概率小于概率小于0.01.故至少需配备故至少需配备8例例6 设有设有80台同类型设备台同类型设备,各台工作是相互独立的各台工作是相互独立的发生故障的概率都是发生故障的概率都是 0.01,且一台设备的故障能由且一台设备的故障能由一个人处理一个人处理.考虑两种配备维修工人的方法考虑两种配备维修工人的方法,其一其一是由四人维护是由四人维护,每人负责每人负责20台台;其二是由其二是由3人共同维人共同维护台护台80.试比较这两种方法在设备发生故障时不能试比较这两种方法在设备发生故障时不能及时维修的概率的大小及时
11、维修的概率的大小.解解 按第一种方法按第一种方法发生故障时不能及时维修发生故障时不能及时维修”,而不能及时维修的概率为而不能及时维修的概率为则知则知80台中发生故障台中发生故障故有故有即有即有 按第二种方法按第二种方法故故 80 台中发生故障而不能及时维修的概率为台中发生故障而不能及时维修的概率为离离散散型型随随机机变变量量的的分分布布两点分布两点分布均匀分布均匀分布二项分布二项分布泊松分布泊松分布几何分布几何分布二项分布二项分布泊松分布泊松分布两点分布两点分布三、小结Jacob BernoulliBorn:27 Dec 1654 in Basel,SwitzerlandDied:16 Aug 1705 in Basel,Switzerland伯努利资料泊松资料Born:21 June 1781 in Pithiviers,FranceDied:25 April 1840 in Sceaux(near Paris),FranceSimon Poisson