1、6.2 立方根教学目标:1使学生进一步理解立方根的概念,并能熟练地进行求一个数的立方根的运算;2.能用有理数估计一个无理数的大致范围,使学生形成估算的意识,培养学生的估算能力;3.经历运用计算器探求数学规律的过程,发展合情推理能力。 重点:用有理数估计一个无理的大致范围。难点:用有理数估计一个无理的大致范围。教学过程一、复习引新判断题:4的平方根是2( )1的立方根是1( )0.125的立方根是0.5( )的立方根是( )6是216的立方根( )求下列各式的值 ;3、问题:有多大呢?(这里可以让学生回忆前面学习过程中讨论有多大时的方法)。学生小组讨论,并交流学方法。因为,所以因为,所以因为,所
2、以如此循环下去,可以得到更精确的的近似值,它是一个无限不循环小数,=一3684 031 49事实上,很多有理数的立方根都是无限不循环小数我们用有理数近似地表示它们自主学习1、利用计算器来求一个数的立方根,并完成课本第171页的练习2.(学生利用计算器的说明书独立学习对于一些暂时还没有学会的学生,可以采用同学之间互帮互学的方式解决)2、学生解决上节课未解决的一个问题,简单回忆:如果要生产这种容积为50L的圆柱形热水器,使它的高等于底面直径的2倍,这种容器的底面直径应取多少?(结果保留两个有效数字)解:略二、讲授新课探一探,说一说利用计算器计算,并将计算结果填在表中,你发现了什么吗?你能说说其中的道理吗?用计算器计算(结果个有效数字)。并利用你发现的规律说出,的近似值。三、练习习题6.2 第2、5题四、小结五、布置作业必做:课本第172页第4、8题;