1、2021春七年级数学下册 第六章 实数 6.2 立方根教案 新人教版2021春七年级数学下册 第六章 实数 6.2 立方根教案 新人教版年级:姓名:第六章 实数6.2 立方根1. 了解立方根的概念,初步学会用根号表示一个数的立方根.2. 了解立方与开立方互为逆运算,会用立方运算或计算器求某数的立方根.3. 能用类比平方根的方法学习立方根及开立方运算.立方根的概念及求法.立方根与平方根的区别.问题 填写,并探求交流立方值与平方值的不同.鼓励学生踊跃发言表述各自总结的结论.【教学说明】求立方运算时,当底数互为相反数,其立方值也互为相反数,这与平方运算不同,平方运算的底数为相反数时,平方值相等.故一
2、个正数的平方根有两个值,但一个正数的立方根只有一个值.引出立方根定义:若x3=a,则x为a的立方根,记为.根据上述定义,请学生口述下列问题的结果,并推广到一般规律.【教学总结】由教师汇总得出下列结论:1.正数的立方根是正数,负数的立方根是负数,0的立方根是0.2.例1 求下列各数的立方根.分析:依据立方根的定义,先写出这四个数分别是由哪个数的立方得到的,从而求出立方根.【教学说明】被开方数是带分数时,先将其化成假分数.例2 求下列各式的值.分析:先要分清符号的实际意义,如表示求-512的立方根,而-表示求512的立方根的相反数.解:(1)-8;(2);(3)-0.2;(4)6.【教学说明】以上
3、两例中可总结得到:(1)任何数的立方根只有一个,而且被开方数的符号与立方根的符号相同;(2)被开方数是算式,可先算出结果.例3 求下列各式中的x.分析:可根据立方根的定义求得x的大小.(2)(3)(4)中分别把(x+2),(x-1),(2x+3)看作一个整体. 【教学说明】本题实质是解关于x的三次方程,两边同时开立方是解题的基本思路.例4 在做浮力实验时,小华用一根细线将一正方体铁块拴住,完全浸入盛满水的圆柱烧杯中,并用一量筒量得被铁块排开的水的体积为40.5cm3,小华又将铁块从水中提起,量得水杯中的水位下降了0.62cm,请问烧杯内部的底面半径和铁块的棱长各是多少?(用计算器求结果,结果精
4、确到0.1cm).分析:铁块排出的40.5cm3的水的体积,是铁块的体积,也是高为0.62cm烧杯的体积.【答案】烧杯内部的底面半径约是4.6cm,铁块的棱长约是3.4cm.【教学说明】引导学生完成上述问题后,指导学生用计算器求立方根,并用实际训练形成应用能力.例1.计算下列各题例2.某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化后浇铸成一个长方体钢铁,此长方体的长,宽,高分别为160cm,80cm和40cm,求原来立方体钢铁的边长.例3.有一边长为6cm的正方体的容器中盛满水,将这些水倒入另一正方体容器时,还需再加水127cm3才满,求另一正方体容器的棱长.例4.若3x+16的立方根是4,求2x+4的平方根.【教学说明】通过上述几道题目的练习,可进一步巩固对本节知识的理解和领悟.按下列问题顺序让学生表达,并补充完善.1.立方和开立方的意义.2.正数、0、负数的立方根的特征.3.立方根与平方根的异同.从教材“习题6.2”中选取.