1、课时素养评价 四对 数 运 算 (25分钟50分)一、选择题(每小题4分,共16分)1.在M=log3(x2-x-6)中,要使式子有意义,x的取值范围是()A.x3B.x-2C.x3D.x-2【解析】选C.由题意,x2-x-60,解得x3.2.若x=16,则x=()A.-4B.-3C.3D.4【解析】选A.x=16=-4.3.若x=log43,则4x+4-x的值为()A.3B.4C.D.【解析】选D.因为原式=+=3+=.4.-2-lg 0.01+ln e3等于()A.14B.0C.1D.6【解析】选B.原式=4-(33-(-2)+3=4-9-(-2)+3=0.二、填空题(每小题4分,共8分)
2、5.计算8+log243=_.【解析】原式=+log226=-3+6=3.答案:36.若loglog2(ln x)=1,则x=_.【解析】由loglog2(ln x)=1,所以log2(ln x)=,所以ln x=2,所以x=.答案:三、解答题(共26分)7.(12分)计算lg 0.001+log282+lne-3 .【解析】原式=lg 10-3+log226+4-3=-3+6+-3=.8.(14分)求下列各式的值:(1)2.(2)+log7343+102lg 5.【解析】(1)2=(52=4.(2)原式=+log773+=+3+25=.(15分钟30分)1.(4分)设0a1,实数x,y满足x
3、+logay=0,则y关于x的函数的图像大致形状是 ()【解析】选A.因为x+logay=0,所以logay=-x,所以y=a-x,即y=(a-1)x=,又因为0a1,所以指数函数y=的图像单调递增,过点(0,1).2.(4分)方程=的解是()A.x=B.x=C.x=D.x=9【解析】选A.因为=2-2,所以log3x=-2,所以x=3-2=.3.(4分)若a=log92,则9a=_,3a+3-a=_.【解析】a=log92,则9a=2,所以3a=,3a+3-a=+=.答案:24.(4分)方程4x-2x-6=0的解为_.【解析】由4x-2x-6=0,得(2x)2-2x-6=0,解得2x=3,或
4、2x=-2(舍去),所以x=log23.答案:x=log235.(14分)已知logax=4,logay=5(a0,且a1),求A=的值.【解析】由logax=4,得x=a4,由logay=5,得y=a5,所以A=(y-2=(y-2=(a4(a5=a0=1.1.对数式log(2x-3)(x-1)中实数x的取值范围是_.【解析】由题意可得解得x,且x2,所以实数x的取值范围是(2,+).答案:(2,+)2.求下列各式中的x值:(1)logx27=.(2)log2 x=-.(3)x=log3.【解析】(1)由logx27=,可得=27,所以x=2=(33=32=9.(2)由log2x=-,可得x=,所以x=.(3)由x=log3,可得x=log33-2=-2. - 6 -