资源描述
七年级数学上册1.1生活中的图形月考试卷(A4可编辑)
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计34分)
1、矩形ABCD中,AB=3,BC=4,以AB为轴旋转一周得到圆柱,则它的表面积是( ).
A .56 B .32 C .24 D .60
2、一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为 1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为( )
A .33分米2 B .24分米2 C .21分米2 D .42分米2
3、围成下列立体图形的各个面中,每个面都是平面的是( )
A . B .
C . D .
4、如图,将直角三角形绕其斜边旋转一周,得到的几何体为( )
A . B . C . D .
5、围成下列立体图形的各个面中,每个面都是平的是( )
A . 长方体 B . 圆柱体
C . 球体 D . 圆锥体
6、某学校设计了如图的一个雕塑,现在工人师傅打算用油漆喷刷所有的暴露面.经测量,已知每个小正方块的棱长均为1 m,则需喷刷油漆的总面积为( )m2
A .9 B .19 C .34 D .29
7、下列图形中不是立体图形的是( )
A .圆锥 B .圆柱 C .长方形 D .棱柱
8、用钢笔写字是一个生活中的实例,用数学原理分析,它所属于的现象是( )
A .点动成线 B .线动成面 C .线线相交 D .面面相交
9、在一些常见的几何体正方体、长方体、圆柱、圆锥、球、圆台、六棱柱、六棱锥中属于柱体有( )
A .3个 B .4个 C .5个 D .6个
10、下面几何体中,是长方体的为( )
A . B .
C . D .
11、下列几何体中,不完全是由平面围成的是( )
A . B . C . D .
12、下列说法正确的有( )
①n棱柱有2n个顶点,2n条棱,(n+2)个面(n为不小于3的正整数);②点动成线,线动成面,面动成体;③圆锥的侧面展开图是一个圆;④用平面去截一个正方体,截面的形状可以是三角形、四边形、五边形、六边形.
A .1个 B .2个 C .3个 D .4个
13、下列说法中,
⑴联结两点的线段叫做两点之间的距离;(2)用度量法和叠合法都可以比较两个角的大小;(3)铅垂线、三角尺、合页型折纸都可以检验直线和平面垂直:(4)六个面、十二条棱和八个顶点组成的图形都是长方体;你认为正确的个数为…( )
A .1个 B .2个 C .3个 D .4个
14、下列立体图形含有曲面的是( )
A . B . C . D .
15、生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于( )
A .圆柱体 B .球体 C .圆 D .圆锥体
16、如图是某几何体的三视图及相关数据,则该几何体的表面积是( )
A . B . C . D .
17、如图是一个正方体,小敏同学经过研究得到如下5个结论,正确的结论有( )个.
①用剪刀沿着它的棱剪开这个纸盒,至少要剪7刀,才能展开成平面图形;②用一平面去截这个正方体得到的截面是三角形ABC,则∠ABC=45°;③一只蚂蚁在一个实心正方体木块P点处想沿着表面爬到C点最近的路只有4条;④用一平面去截这个正方体得到的截面可能是八边形;⑤正方体平面展开图有11种不同的图形.
A .1 B .2 C .3 D .4
二、填空题(每小题2分,共计40分)
1、从棱长为2cm的正方体毛坯的一角,挖去一个棱长为1cm的小正方体,得到一个如图所示的零件,则这个零件的表面积是 cm2。
2、如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是 .
3、下列平面图形中,将编号为(只需填写编号)的平面图形绕轴旋转一周,可得到图中所示的立体图形 .
4、如图,直角三角形绕直线L旋转一周,得到的立体图形是 .
5、如图,由18个棱长为2cm的正方体拼成的立体图形,它的表面积是 cm2.
6、如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是 .
7、笔尖在纸上写字说明 ;车轮旋转时看起来像个圆面,这说明 ;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明 .
8、一个长方形的长和宽分别为5、4,绕它的一边所在的直线旋转一周所形成的几何体的体积0 (结果保留π)
9、将四个棱长为1厘米的小正方体拼成一个大长方体,大长方体的表面积可以是 平方厘米.
10、如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为 cm3.(结果保留π)
11、如图,在长方体ABCD﹣EFGH中,与对角线BH异面的棱有 .
12、在朱自清的《春》中有描写春雨的语句“像牛毛,像细丝,密密地斜织着”这里把雨滴看成了点,请用数学知识解释这一现象 .
13、若一个棱柱有7个面,则它是 棱柱.
14、长方形的两条边长分别为3cm和4cm,以其中一条边所在的直线为轴旋转一周后得到几何体的底面积是 .
15、一个长方形绕着它的一条边所在的直线旋转一周后所得到的立体图形是圆柱.( )
16、笔尖在纸上运动时就形成了线,这可以说明点动成线;汽车的雨刷在挡风玻璃上画出一个扇面,这可以说明 .
17、如图,长方形的长为3cm,宽为2cm,以该长方形较短的一边所在直线为轴,将其旋转一周,形成圆柱,其体积为 cm3.(结果保留π)
18、长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为 (结果保留π).
19、一个棱锥共有7个面,这是 棱锥,有 个侧面.
20、如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有 条.
三、计算题(每小题2分,共计6分)
1、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
2、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
3、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
四、解答题(每小题4分,共计20分)
1、如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形;
(2)设AD=x,建立关于x的方程模型,求出x的值.
2、在一个长方形中,长和宽分别为4cm、3cm,若该长方形绕着它的一边旋转一周,形成的几何体的体积是多少?(结果用π表示)
3、如图,一个正五棱柱的底面边长为2cm,高为4cm.
(1)这个棱柱共有多少个面?计算它的侧面积;
(2)这个棱柱共有多少个顶点?有多少条棱?
(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.
4、10个棱长为acm的正方体摆放成如图的形状,这个图形的表面积是多少?
5、如图,各图中的阴影图形绕着直线I旋转360°,各能形成怎样的立体图形?
展开阅读全文