1、七年级数学上册1.1生活中的图形期末试卷word可编辑(考试时间:120分钟,总分100分)班级:_ 姓名:_ 分数:_一、单选题(每小题2分,共计34分)1、某学校设计了如图的一个雕塑,现在工人师傅打算用油漆喷刷所有的暴露面.经测量,已知每个小正方块的棱长均为1 m,则需喷刷油漆的总面积为( )m2A .9 B .19 C .34 D .292、如图,是直角三角形的高,将直角三角形按以下方式旋转一周可以得到右侧几何体的是( )A .绕着旋转 B .绕着旋转 C .绕着旋转 D .绕着旋转3、如图,将一个直角三角形绕它的一条直角边所在的直线旋转一周,得到的几何体是圆锥,这一现象能用以下哪个数学
2、知识解释( )A .点动成线 B .线动成面 C .面动成体 D .面面相交得线4、从下列物体抽象出来的几何图形可以看成圆柱的是( )A . B . C . D .5、下列说法中,联结两点的线段叫做两点之间的距离;(2)用度量法和叠合法都可以比较两个角的大小;(3)铅垂线、三角尺、合页型折纸都可以检验直线和平面垂直:(4)六个面、十二条棱和八个顶点组成的图形都是长方体;你认为正确的个数为( )A .1个 B .2个 C .3个 D .4个6、下列几何体中,属于棱锥的是( )A . B .C . D .7、下列几何体中,是棱锥的为( )A . B . C . D .8、下列说法正确的有( )n棱
3、柱有2n个顶点,2n条棱,(n+2)个面(n为不小于3的正整数);点动成线,线动成面,面动成体;圆锥的侧面展开图是一个圆;用平面去截一个正方体,截面的形状可以是三角形、四边形、五边形、六边形.A .1个 B .2个 C .3个 D .4个9、下列几何体中,不完全是由平面围成的是( )A . B . C . D .10、如图是某几何体的三视图及相关数据,则该几何体的表面积是( )A . B . C . D .11、图中的几何体是由哪个图形绕虚线旋转一周得到的( )A . B . C . D .12、将如图所示的RtACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是( )A . B . C
4、 . D .13、将下列平面图形绕轴旋转一周,能得到图中所示立体图形的是( )A . B . C . D .14、李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为( )A .37 B .33 C .24 D .2115、如图,一个正方体的六个面上分别标有数字1,2,3,4,5,6.根据图中三种状态所显示的数字,正方体的正面“?”表示的数字是( )A .1 B .2 C .3 D .616、下列说法中正确的是( )A .四棱锥有4个面B .连接两点间的线段叫做两点间的距离C .如果线段,则M是线段AB的中点D .射线和射线不是同一条射线
5、17、下列几何图形中为圆锥的是( ).A . B . C . D .二、填空题(每小题2分,共计40分)1、在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 .2、将下列几何体分类,柱体有: (填序号)3、快速旋转一枚竖立的硬币(假定旋转轴在原地不动),则可以得到一个立体图形球这个现象我们可以说成 (请你用点线面体间的关系解释)4、如图,一个长方体的表面展开图中四边形ABCD是正方形正方形的四个角都是直角、四条边都相等,则根据图中数据可得原长方体的体积是 .5、如图,直角三角形绕直线L旋转一
6、周,得到的立体图形是 .6、如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是 7、如图,在平面直角坐标系中,的三个顶点的坐标分别是、,如果沿着边旋转,则所得旋转体的体积是 (结果保留).8、用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是 cm2.9、如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个
7、小立方体,王亮所搭几何体的表面积为 10、已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 11、薄薄的硬币在桌面上转动时,看上去像球,这说明了 .12、有棱长比为的两个正方体容器,若小容器能盛水10千克,则大容器能盛水 千克.13、如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是 .14、如图中的几何体有 个面,面面相交成 线15、下列平面图形中,将编号为(只需填写编号)的平面图形绕轴旋转一周,可得到图中所示的立体图形 16、在长方体、圆柱、圆锥、球中,三视图均一样的几何体是 。17、飞机表演的“飞机拉线”用数学知识解释为 ,三角板绕它的一条直角边
8、旋转一周,形成一个圆锥体,这说明了 18、长方形的两条边长分别为3cm和4cm,以其中一条边所在的直线为轴旋转一周后得到几何体的底面积是 .19、如图,P是直线a外一点,点A,B,C,D为直线a上的点PA=5,PB=4,PC=2,PD=7,根据所给数据写出点P到直线a的距离l的取值范围是 。20、如图,一个正方体由 27 个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体若新几何体与原正方体的表面积相等,则最多可以取走 个小立方块三、计算题(每小题2分,共计6分)1、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的
9、长方形绕着它的宽旋转一周,求形成的圆柱体的表面积2、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?3、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积四、解答题(每小题4分,共计20分)1、图中的立体图形是由哪个平面图形旋转后得到?请用线连起来2、用如图所示的长31.4cm,宽5cm的长方形,围成一个圆柱体,求需加上的两个底面圆的面积是多少平方厘米?(=3.14)3、有3个棱长分别是3cm,
10、4cm,5cm的正方体组合成如图所示的图形其露在外面的表面积是多少?(整个立体图形摆放在地上)4、将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体观察并回答下列问题:(1)其中三面涂色的小正方体有 个,两面涂色的小正方体有 个,各面都没有涂色的小正方体有 个;(2)如果将这个正方体的棱n等分,所得的小正方体中三面涂色的有 个,各面都没有涂色的有 个;(3)如果要得到各面都没有涂色的小正方体100个,那么至少应该将此正方体的棱 等分5、已知长方形ABCD的长为10cm,宽为4cm,将长方形绕AD边所在直线旋转后形成一个什么立体图形?这个立体图形的体积是多少?