1、第38讲 与圆有关的计算题一:如果O半径为5cm,弦ABCD,且AB = 8cm,CD = 6cm,那么AB与CD之间的距离是1或7 cm题二:已知在O中,半径等于13,两条平行弦AB、CD的长度分别为24和10,则AB与CD的距离为7或17 题三:如图,已知点E是圆O上的点,B、C分别是劣弧的三等分点,则的度数为 题四:如图,O是ABC的外接圆,OBC = 42,则A的度数是 题五:如图,直角三角形ABC的斜边AB在直线l上,把ABC按顺时针方向在l上转动两次,使它转到ABC的位置,设BC = 1,AC =,则点A运动到点A的位置时,点A两次运动所经过的路线长为 (计算结果不取近似值)题六:
2、如图,把RtABC的斜边AB放在直线L上,按顺时针方向在L上转动两次,使它转到DEF的位置,设BC =,AC = 1,则点A运动到点D的位置时,点A经过的路线长是多少?点A经过的路线与直线L所围成的面积是多少?题七:如图,已知RtABC中,ACB = 90,AC = 4,BC = 3,以AB边所在的直线为轴,将ABC旋转一周,则所得几何体的表面积是16.8 题八:在RtABC中,C = 90,AC = 2cm,AB =cm,以直角边所在的直线为轴,将ABC旋转一周,则所得的几何体的全面积是 5.25或7cm2(结果保留).第38讲 与圆有关的计算题一:1或7详解:当弦AB和CD在圆心同侧时,如
3、图,过点O作OFCD,垂足为F,交AB于点E,连接OA,OC,ABCD,OEAB,AB = 8cm,CD = 6cm,AE = 4cm,CF = 3cm,OA = OC = 5cm,EO = 3cm,OF = 4cm,EF = OFOE = 1cm;当弦AB和CD在圆心异侧时,如图,过点O作OEAB于点E,反向延长OE交AD于点F,连接OA,OC,ABCD,OFCD,AB = 8cm,CD = 6cm, AE = 4cm,CF = 3cm,OA = OC = 5cm,EO = 3cm,OF = 4cm,EF = OF+OE = 7cm题二:7或17详解:分两种情况考虑:(i)当弦AB与弦CD在
4、圆心O同侧时,如图1所示,过O作OECD,与AB交于F点,由ABCD,可得出OFAB,连接OA,OC,OECD,OFAB,E、F分别为CD、AB的中点,AB = 24,CD = 10,CE = DE = 5,AF = BF = 12,又半径OA = OC = 13,在RtAOF中,根据勾股定理得OF = 5,在RtCOE中,根据勾股定理得OE = 12,则两弦间的距离EF = OEOF = 125 = 7;(ii)当弦AB与弦CD在圆心O异侧时,如图2所示,过O作OECD,延长EO,与AB交于F点,由ABCD,可得出OFAB,连接OA,OC,OECD,OFAB,E、F分别为CD、AB的中点,A
5、B = 24,CD = 10,CE = DE = 5,AF = BF = 12,又半径OA = OC = 13,在RtAOF中,根据勾股定理得:OF = 5,在RtCOE中,根据勾股定理得:OE = 12,则两弦间的距离EF = OE+OF = 12+5 = 17,综上,两条弦间的距离为7或17题三:69详解:由B、C分别是劣弧的三等分点知,圆心角AOB = BOC = COD,又因为,所以AOD = 138,根据同弧所对的圆周角等于圆心角的一半,从而有69题四:48详解:连接OC,OB = OC,OBC = 42,OCB = OBC = 42,BOC = 180OBCOCB = 96,A =
6、BOC = 48题五:详解:在RtABC中,BC = 1,AC =,AB = 2,AB = 2BC,CAB = 30,CBA = 60,ABA = 120,ACA = 90,点A两次运动所经过的路线长为故答案为题六:点A经过的路线长是,点A经过的路线与直线L所围成的面积是详解:在RtABC中,BC =,AC = 1,ABC = 30,CBF = 150,点A经过的路线长=,点A经过的路线与直线L所围成的面积=题七:16.8详解:RtABC中,ACB = 90,AC = 4,BC = 3,AB = 5,AB边上的高为345 = 2.4,所得几何体的表面积是22.43+22.44 = 16.8故答案为16.8题八:6或9详解:C = 90,AC = 2cm,AB =cm,由勾股定理得BC = 1.5cm,(1)当以AC边所在的直线旋转一周时,形成的圆锥的底面半径为1.5 cm,母线长为cm,此时圆锥的全面积为r2+ra = 2.25+3.75 = 6(cm2);(2)当以BC边所在的直线旋转一周时,形成的圆锥的底面半径为2 cm,母线长为cm,此时圆锥的全面积为r2+ra = 4+5 = 9(cm2)