1、第33讲 正多边形与圆题一:已知正六边形的内切圆的半径是,则正六边形的边长为 .题二:边长为a的正六边形的内切圆与外接圆的半径的比为 .题三:如图五边形ABCDE内接于O,A = B = C = D = E求证:五边形ABCDE是正五边形 题四:如图,连接正五边形ABCDE各条对角线,就得到一个五角星图案.(1)求五角星的各个顶角(如ADB)的度数;(2)求证:五边形MNLHK是正五边形题五:如图,已知正方形的边长是4cm,求它的内切圆与外接圆组成的圆环的面积 题六:已知正方形ABCD的边心距OE =cm,求这个正方形外接圆O的面积第33讲 正多边形与圆题一:2.详解:如图,连接OA、OB,O
2、G, 六边形ABCDEF是正六边形,设其边长为a,OAB是等边三角形,OA = AB = a,又OG为正六边形的内切圆的半径,OGAB,OG =,AG =,在RtOAG中,解得a = 2.题二:.详解:正六边形的外接圆的半径等于其边长,为a,正六边形的内切圆的半径等于其边心距,为,正六边形的内切圆与外接圆的半径的比为.题三:见详解详解:A = B = C = D = E,A对着弧BDE,B对着弧CDA,弧BDE = 弧CDA,弧BDE弧CDE = 弧CDA弧CDE,即弧BC = 弧AE,BC = AE,同理可证其余各边都相等,五边形ABCDE是正五边形题四:(1)36;(2)见详解详解:(1)
3、五边形ABCDE是正五边形,ABC = (52)180= 108,ADB = 108(180108) 2 = 36;(2)NBC = NCB = MBN = 36,KMN = MNB+MBN = NBC+NCB+MBN = 108,同理MNL = NLH = LHK = HKM= 108,MN = NL = LH = HK = MK,五边形MNLHK是正五边形题五:4 cm2.详解:如图,连接OE、OA,设正方形外接圆、内切圆的半径分别为R、r, 则OA2OE2 = AE2,即R2r2 = 4,则S圆环 = S大圆S小圆 = R2r2 = (R2r2),R2r2 = 4, S = 4 (cm2)题六:4 cm2详解:连接OC、OD,圆O是正方形ABCD的外接圆,O是对角线AC、BD的交点,ODE =ADC = 45,OECD,OED = 90,DOE = 180OEDODE = 45,OE = DE = cm,由勾股定理得OD = 2 cm,这个正方形外接圆O的面积是22 = 4(cm2).