1、第27讲 切线性质定理的应用题一:如图,AB是O的直径,AD、DC、BC都是O的切线,切点分别是A、E、B,若DC = 9,AD = 4,则BC的长为 题二:如图,AD、AE、BC都是O的切线,切点分别为D、E、F,若AD = 6,则ABC的周长为 题三:如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D若AB = 4,BE = 2,则AD = .题四:如图,AB为半圆O的直径,点C是AB延长线上一点,CD为半圆的切线,D为切点,若A = 30,OA = 2,求OC的长题五:如图,已知O的半径等于5,圆心O到直线a的距离为6,点P是直线
2、上任意一点,过点P作O的切线PA,切点为A,则切线长PA的最小值为 .题六:如图,在平面直角坐标系xOy中,直线AB过点A(3,0),B(0,3),O的半径为1(O为坐标原点),点P在直线AB上,过点P作O的一条切线PQ,Q为切点,则切线长PQ的最小值为 .题七:如图,PA与O相切于点A,OP与O相交于点B,点C是O上一点,P = 22,求ACB度数题八:如图,PA与O相切,切点为A,PO交O于点C,点B是O上一点(点B与点A、C不重合),若APC = 32,求ABC的度数题九:如图,直线AB、BC、CD分别与O相切于E、F、G,且ABCD,若OB = 6,OC = 8,则BE+CG的长等于
3、.题十:如图,四边形ABCD的边AB、BC、CD、DA和O分别相切于点L、M、N、P若四边形ABCD的周长为20,则AB+CD等于 .第27讲 切线性质定理的应用题一:5详解:AD、DC、BC均为O的切线,AD = ED,BC = CE,DC = 9,AD = 4,BC = CE = DCDE = DCAD = 94 = 5题二:12详解:AD、AE、CB均为O的切线,D、E、F分别为切点,CE = CF,BD = BF,AE = AD = 6,ABC的周长为AC+BC+AB = AC+CF+BF+AB = AC+CE+BD+AB = AE+AD = 12故答案为12题三:3详解:连接OC,则
4、OCDE,ADDE,ADOC,AB = 4,BE = 2,OC = 2,OE = 4,AE = 6,AD = 3故答案为3题四:4.详解:如图,连接OD,CD为半圆的切线,D为切点,ODCD,即ODC = 90,又A = 30,DOC = 60,C = 30,OA = 2,OD = 2,OC = 4.题五:.详解:根据题意画出相应的图形,如图所示:当OP直线a时,AP最小,AP与圆O相切,OAP = 90,OPa,可得OP = 6,在RtAOP中,OA = 5,OP = 6,根据勾股定理得:AP =题六:2详解:连接OP、OQPQ是O的切线,OQPQ;根据勾股定理知PQ2 = OP2OQ2,当
5、POAB时,线段PQ最短;又A(3,0),B(0,3),OA = OB = 3,AB = 6,OP =AB = 3,PQ = 2故答案为2题七:34详解:PA是切线,OAP = 90,P = 22,AOP = 180OAPP = 68,ACB =AOP = 34题八:29或151.详解:连接OA,有两种情况(如图所示):当点B在优弧ABC时,PA与O相切,PAO = 90POA = 90APO = 9032 = 58在O中,ABC =POA = 29当点B在劣弧AC上时,四边形ABCB是O的内接四边形,ABC = 180ABC = 151ABC = 29或151.题九:10详解:ABCD,ABC+BCD = 180,CD、BC,AB分别与O相切于G、F、E,OBC =ABC,OCB =BCD,BE = BF,CG = CF,OBC+OCB = 90,BOC = 90,BC = 10,BE+CG = 10题十:10.详解:AL = AP,BL = BM,DN = PD,CN = CM,四边形ABCD的周长为AL+AP+BL+BM+CM+CN+DN+DP,可化简为2AB+2CD,已知四边形的周长,可求出AB+CD的长,根据圆外切四边形的两组对边和相等,得AB+CD = 10