1、函数的奇偶性与单调性练习(解析版)一、利用单调性、奇偶性解不等式1. 若为奇函数,且在(0,+)内是增函数,又,则的解集为.命题意图:本题主要考查函数的奇偶性、单调性的综合性质,一元一次不等式的解集以及运算能力和逻辑推理能力.属级题目.知识依托:奇偶性及单调性定义及判定、不等式的解法及转化思想.错解分析:本题对不等式组的解题能力要求较高,容易漏掉小于0的情形,同时交并集的运算技能不过关,结果也难获得.技巧与方法:将转化为不等式组求解,或在直角坐标系中画出示意图,依据图形求解.详解: 2. 已知偶函数在区间0,+)单调递增,则满足的取值范围是 命题意图:本题主要考查函数的奇偶性、单调性的判定以及
2、运算能力和逻辑推理能力.属级题目.知识依托:奇偶性及单调性定义及判定、分类讨论数学思想及转化思想.错解分析:本题对思维能力要求较高,如果不会分类,运算技能不过关,结果很难获得.技巧与方法:分类讨论与添加绝对值.详解一:详解二:3. 设函数f(x)是定义在R上的偶函数,并在区间(,0)内单调递增,f(2a2+a+1)f(3a22a+1).求a的取值范围.命题意图:本题主要考查函数奇偶性、单调性的基本应用以及对复合函数单调性的判定方法.本题属于级题目.知识依托:逆向认识奇偶性、单调性、指数函数的单调性及函数的值域问题.错解分析:逆向思维受阻、条件认识不清晰、复合函数判定程序紊乱.技巧与方法:本题属
3、于知识组合题类,关键在于读题过程中对条件的思考与认识,通过本题会解组合题类,掌握审题的一般技巧与方法.解:设0x1x2,则x2x10,f(x)在区间(,0)内单调递增,f(x2)f(x1),f(x)为偶函数,f(x2)=f(x2),f(x1)=f(x1),f(x2)f(x1).f(x)在(0,+)内单调递减.由f(2a2+a+1)3a22a+1.解之,得0a3.二、利用单调性、奇偶性比较大小4. 如果函数f(x)在R上为奇函数,在1,0)上是增函数,试比较f(),f(),f(1)的大小关系_ f()f()f(1)_.命题意图:本题主要考查函数的奇偶性、单调性的判定和逻辑推理能力.属级题目.知识
4、依托:奇偶性及单调性定义及判定、比较大小及转化思想.错解分析:本题注重考查基础知识,较易判断,可依据示意图直接得出结论.技巧与方法:利用图象法求解.详解:由题意,函数在区间上是增函数,于是三、利用单调性、奇偶性求函数值5. 函数f(x)对于任意实数x满足条件f(x+2)=,若f(1)=-5,则f(f(5)=_.命题意图:本题主要考查函数的周期性的判定以及运算能力和逻辑推理能力.属级题目.知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.错解分析:本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得.技巧与方法:对先计算f(5),然后计算结果.详解:一般地,若函数满足或
5、,则,其中为非0实常数.四、判断抽象函数的单调性、奇偶性6. 已知函数f(x)对一切x、yR,都有f(x+y)= f(x)+ f(y),(1)判断函数f(x)的奇偶性;(2)若f(-3)=a,用a表示f(12)分析:判断函数奇偶性的一般思路是利用定义,看f(-x)与f(x)的关系,进而得出函数的奇偶性;解决本题的关键是在f(x+y)= f(x)+ f(y)中如何出现f(-x);用a表示f(12)实际上是如何用f(-3)表示f(12),解决该问题的关键是寻找f(12)与f(-3)的关系解答:7. 已知函数f(x)在(1,1)上有定义,当且仅当0x1时f(x)0,且对任意x、y(1,1)都有f(x
6、)+f(y)=f(),试证明:(1)f(x)为奇函数;(2)f(x)在(1,1)上单调递减.命题意图:本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力.属级题目.知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.错解分析:本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得.技巧与方法:对于(1),获得f(0)的值进而取x=y是解题关键;对于(2),判定的范围是焦点.证明:(1)由f(x)+f(y)=f(),令x=y=0,得f(0)=0,令y=x,得f(x)+f(x)=f()=f(0)=0.f(x)=f(x).f(x)为奇函数.(2)先证f(x)在(0
7、,1)上单调递减.令0x1x21,则f(x2)f(x1)=f(x2)+f(x1)=f()0x1x20,1x1x20,0,又(x2x1)(1x2x1)= (x21)(x1+1)0 x2x11x2x1,01,由题意知f()0,即f(x2)f(x1).f(x)在(0,1)上为减函数,又f(x)为奇函数且f(0)=0. f(x)在(1,1)上为减函数.一、选择题1已知函数f(x)ax2bxc(a0)是偶函数,那么g(x)ax3bx2cx()A奇函数B偶函数C既奇又偶函数D非奇非偶函数2已知函数f(x)ax2bx3ab是偶函数,且其定义域为a1,2a,则()A,b0Ba1,b0 Ca1,b0Da3,b0
8、3已知f(x)是定义在R上的奇函数,当x0时,f(x)x22x,则f(x)在R上的表达式是()Ax(x2)By x(x1)Cy x(x2)Dyx(x2)4已知f(x)x5ax3bx8,且f(2)10,那么f(2)等于()A26B18C10D105函数是()A偶函数B奇函数C非奇非偶函数D既是奇函数又是偶函数6若f(x),g(x)都是奇函数,F(x)=af(x)+bg(x)+2在(0,)上有最大值5,则F(x)在(,0)上有()A最小值5B最大值5C最小值1D最大值3二、填空题7函数的奇偶性为_(填奇函数或偶函数)8若y(m1)x22mx3是偶函数,则m_9已知f(x)是偶函数,g(x)是奇函数
9、,若,则f(x)的解析式为_10已知函数f(x)为偶函数,且其图象与x轴有四个交点,则方程f(x)0的所有实根之和为_三、解答题11设定义在2,2上的偶函数f(x)在区间0,2上单调递减,若f(1m)f(m),求实数m的取值范围12已知函数f(x)满足f(xy)f(xy)2f(x)f(y)(xR,yR),且f(0)0,试证f(x)是偶函数13.已知函数f(x)是奇函数,且当x0时,f(x)x32x21,求f(x)在R上的表达式14.f(x)是定义在(,55,)上的奇函数,且f(x)在5,)上单调递减,试判断f(x)在(,5上的单调性,并用定义给予证明富不贵只能是土豪,你可以一夜暴富,但是贵气却
10、需要三代以上的培养。孔子说“富而不骄,莫若富而好礼。” 如今我们不缺土豪,但是我们缺少贵族。高贵是大庇天下寒士俱欢颜的豪气与悲悯之怀,高贵是位卑未敢忘忧国的壮志与担当之志 高贵是先天下之忧而忧的责任之心。精神的财富和高贵的内心最能养成性格的高贵,以贵为美,在不知不觉中营造出和气的氛围;以贵为高,在潜移默化中提升我们的素质。以贵为尊,在创造了大量物质财富的同时,精神也提升一个境界。一个心灵高贵的人举手投足间都会透露出优雅的品质,一个道德高贵的社会大街小巷都会留露出和谐的温馨,一个气节高贵的民族一定是让人尊崇膜拜的民族。别让富而不贵成为永久的痛。分享一段网上流传着改变内心的风水的方法,让我们的内心高贵起来:喜欢付出,福报就越来越多;喜欢感恩,顺利就越来越多;喜欢助人,贵人就越来越多;喜欢知足,快乐就越来越多;喜欢逃避,失败就越来越多;喜欢分享,朋友就越来越多。喜欢生气,疾病就越来越多;喜欢施财,富贵就越来越多;喜欢享福,痛苦就越来越多;喜欢学习,智慧就越来越多。