收藏 分销(赏)

高一数学必修5数列经典例题(裂项相消法).doc

上传人:丰**** 文档编号:4320175 上传时间:2024-09-05 格式:DOC 页数:3 大小:21.50KB
下载 相关 举报
高一数学必修5数列经典例题(裂项相消法).doc_第1页
第1页 / 共3页
高一数学必修5数列经典例题(裂项相消法).doc_第2页
第2页 / 共3页
高一数学必修5数列经典例题(裂项相消法).doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2.(201成都模拟)等比数列a得各项均为正数,且2a1a21,a3=9aa6,()求数列得通项公式;()设n=log3a1og32+gan,求数列得前n项与解:()设数列n得公比为q,由a29a6有=9a42,2=.由条件可知各项均为正数,故q.由213a1有2a1+1=1,a1=故数列an得通项式为a=.()bn=+=(1+n)=,故=2()则+=2()()+()=,数列得前n项与为.(2013江西)正项数列a满足(n1)2n0.()求数列n得通项公式an;()令bn=,求数列bn得前n项与.解:(1)由正项数列n满足:(n1)an2=0,可有(n2n)(an+1)0 an2n.(2)an

2、=2,bn=,bn=,T=数列b得前n项与Tn为.(2013山东)设等差数列an得前n项与为Sn,且S4=4S2,a2n+1.()求数列a得通项公式;()设数列n满足=1,nN*,求b得前n项与n.解:()设等差数列an得首项为a1,公差为d,由4=4S2,n=2a+1有:,解有a=1,d=2.n=n1,N()由已知+=,nN*,有:当n1时,当n2时,=(1)(1)=,,n=1时符合=,nN*由()知,an=2n1,nN*bn,nN*.又Tn=+,Tn=+,两式相减有:n=+(+)n=3.28.(21山东)已知等差数列n满足:37,5+a7=26.n得前n项与为Sn.()求an及Sn;()令

3、(*),求数列bn得前n项与Tn.解:()设等差数列an得公差为d,a37,a5+7=6,有,解有a1=3,d=2,a3+2(n1)=2n+;Sn=n2+2;()由()知an=2n1,bn=,T=,即数列bn得前n项与n=.2.(20四川)在数列an中,1=1,.()求a得通项公式;()令,求数列bn得前n项与Sn;()求数列an得前n项与Tn解:()由条件有,又n=1时,故数列构成首项为1,公式为得等比数列.,即.()由有,,两式相减,有:,.()由有.n2n2a12an+1=.3.(2010四川)已知等差数列n得前项与为6,前8项与为4.()求数列a得通项公式;()设b=(an)qn1(q

4、0,n),求数列bn得前项与Sn解:(1)设n得公差为d,由已知有解有a1=3,d1故=3+(n1)(1)n;(2)由(1)得解答有,b=nn1,于就是n=1q0+q+q2+nqn1.若q1,将上式两边同乘以,有qSn=1q+22+q3+nqn.上面两式相减,有(q1)S=nn(12+qn1)=nqn于就是Sn=若q=1,则n=1+2+3+n=,Sn=.4.(010四川)已知数列an满足a1=0,a2=2,且对任意m、nN*都有a2m1n12m+2(mn)2(1)求a,a5;(2)设bn=a2nan(n),证明:b就是等差数列;(3)设(n+1an)qn1(q0,N*),求数列cn得前项与n.

5、解:(1)由题意,令m,n1,可有a32a2+=6再令m=3,n=1,可有a5=2a31+8=20(2)当N*时,由已知(以n+2代替)可有a23+an1=a2n+1+8于就是a2(1)+1a2(n+1)1(2n+1a1)= 即bn1bn8bn就是公差为8得等差数列()由(1)(2)解答可知bn就是首项为b=a3a16,公差为得等差数列则bn=8n2,即a2+1a21=8n另由已知(令=1)可有a(n1)2.an+1n21=2+1=n于就是cn2nq.当q=1时,n=4+6+=n(+1)当1时,n=q01+q2+2n1两边同乘以q,可有qSn=2q146+2nqn.上述两式相减,有(1)Sn=

6、2(1+q2+qn1)2nqn=22q=2Sn=综上所述,Sn.1(09湖北)已知数列a就是一个公差大于得等差数列,且满足a6=5,a+7=16(1)求数列得通项公式;(2)数列与数列bn满足等式n=(nN),求数列b得前项与n.解:(1)设等差数列an得公差为d,则依题意可知d0由2+=1,有,a1+d6由a3a655,有(a1+2d)(a15d)=5由联立方程求,有d=2,1=1/d=2,(排除)an=+(n1)2=2n1(2)令c,则有an1+c2+can+1=c1+cn+两式相减,有an1a=cn1,由(1)有1,+1=2cn+,即n=(n2),即当2时,bn=2n1,又当n时,b1=a1=2bn=于就是Sn=1b2+b3+b=+2324+2+1=n2,n2,

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服