1、二次函数的图象教案设计 本节课在二次函数y=ax2和y=ax2+c的图象的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自的性质.旨在全面掌握所有二次函数的图象和性质的变化情况.同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先是从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c.符合学生的认知特点,体会建立二次函数对称轴和顶点坐标公式的必要性. 在教学中,主要是让学生自己动手画图象,通过自己的观察、交流、对比、概括和反思 等探索活动,使学生达到对抛物线自身特点的认
2、识和对二次函数性质的理解.并能利用它的性质解决问题. 2.4二次函数y=ax2+bx+c的图象(一) 教学目标 (一)教学知识点 1.能够作出函数y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系.理解a,h,k对二次函数图象的影响. 2.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标. (二)能力训练要求 1.通过学生自己的探索活动,对二次函数性质的研究,达到对抛物线自身特点的认识和对二次函数性质的理解. 2.经历探索二次函数的图象的作法和性质的过程,培养学生的探索能力. (三)情感与价值观要求 1.经历观察、猜想、总结等数学活动过程,发
3、展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点. 2.让学生学会与人合作,并能与他人交流思维的过程和结果. 教学重点 1.经历探索二次函数y=ax2+bx+c的图象的作法和性质的过程. 2.能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响. 3.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标. 教学难点 能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能够理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响. 教学方法 探索比较总结法. 教具准备
4、投影片四张 第一张:(记作2.4.1A) 第二张:(记作2.4.1B) 第三张:(记作2.4.1C) 第四张:(记作2.4.1D) 教学过程 .创设问题情境、引入新课 师我们已学习过两种类型的二次函数,即y=ax2与y=ax2+c,知道它们都是轴对称图形,对称轴都是y轴,有最大值或最小值.顶点都是原点.还知道y=ax2+c的图象是函数y=ax2的图象经过上下移动得到的,那么y=ax2的图象能否左右移动呢?它左右移动后又会得到什么样的函数形式,它又有哪些性质呢?本节课我们就来研究有关问题. .新课讲解 一、比较函数y=3x2与y=3(X-1)2的图象的性质. 投影片:(2.4A) (1)完成下表
5、,并比较3x2和3(x-1)2的值, 它们之间有什么关系? X-3-2-101234 3x2 3(x-1)2 (2)在下图中作出二次函数y=3(x-1)2的图象.你是怎样作的? (3)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么? (4)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x值的增大而减小? 师请大家先自己填表,画图象,思考每一个问题,然后互相讨论,总结. 生(1)第二行从左到右依次填:27.12,3,0,3,12,27,48;第三行从左到右依次填48,27,12,3
6、,0,3,12,27. (2)用描点法作出y=3(x-1)2的图象,如上图. (3)二次函数)y=3(x-1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x-1)2的图象的对称轴是直线x=1,顶点坐标是(1,0). (4)当x1时,函数y=3(x-1)2的值随x值的增大而增大,x1时,y=3(x-1)2的值随x值的增大而减小. 师能否用移动的观点说明函数y=3x2与y=3(x-1)2的图象之间的关系呢? 生y=3(x-1)2的图象可以看成是函数)y=3x2的图象整体向右平移得到的. 师能像上节课那样比较它们图象的性质吗? 生相同点: a.图象都中抛物线,
7、且形状相同,开口方向相同. b.都是轴对称图形. c.都有最小值,最小值都为0. d.在对称轴左侧,y都随x的增大而减小.在对称轴右侧,y都随x的增大而增大. 不同点: a.对称轴不同,y=3x2的对称轴是y轴y=3(x-1)2的对称轴是x=1. b.它们的位置不问.:Www.zk5u. c.它们的顶点坐标不同.y=3x2的顶点坐标为(0,0),y=3(x-1)2的顶点坐标为(1,0), 联系: 把函数y=3x2的图象向右移动一个单位,则得到函数y=3(x-1)2的图像. 二、做一做 投影片:(2.4.1B) 在同一直角坐标系中作出函数y=3(x-1)2和y=3(x-1)2+2的图象.并比较它
8、们图象的性质. 生图象如下 它们的图象的性质比较如下: 相同点: a.图象都是抛物线,且形状相同,开口方向相同. b.都足轴对称图形,对称轴都为x=1. c.在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大. 不同点: a.它们的顶点不同,最值也不同.y=3(x-1)2的顶点坐标为(1.0),最小值为0.y=3(x-1)2+2的顶点坐标为(1,2),最小值为2. b.它们的位置不同. 联系: 把函数y=3(x-1)2的图象向上平移2个单位,就得到了函数y=3(x-1)2+2的图象. 三、总结函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象之间的关系. 师通
9、过上画的讨论,大家能够总结出这三种函数图象之间的关系吗? 生可以. 二次函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象都是抛物线.并且形状相同,开口方向相同,只是位置不同,顶点不同,对称轴不同,将函数y=3x2的图象向右平移1个单位,就得到函数y=3(x-1)2的图象;再向上平移2个单位,就得到函数y=3(x-1)2+2的图象. 师大家还记得y=3x2与y=3x2-1的图象之间的关系吗? 生记得,把函数y=3x2向下平移1个平位,就得到函数y=3x2-1的图象. 师你能系统总结一下吗? 生将函数y=3x2的图象向下移动1个单位,就得到了函数y=3x2-1的图象,向上移动1个单
10、位,就得到函数y=3x2+1的图象;将y=3x2的图象向右平移动1个单位,就得到函数y=3(x-1)2的图象:向左移动1个单位,就得到函数y=3(x+1)2的图象;由函数y=3x2向右平移1个单位、再向上平移2个单位,就得到函数y=3(x-1)2+2的图象. 师下面我们就一般形式来进行总结. 投影片:(2.4.1C) 一般地,平移二次函数y=ax2的图象便可得到二次函数为y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象. (1)将y=ax2的图象上下移动便可得到函数y=ax2+c的图象,当c0时,向上移动,当c0时,向下移动. (2)将函数y=ax2的图象左右移动便可得到函数y
11、=a(x-h)2的图象,当h0时,向右移动,当h0时,向左移动. (3)将函数y=ax2的图象既上下移,又左右移,便可得到函数y=a(x-h)+k的图象. 因此,这些函数的图象都是一条抛物线,它们的开口方向,对称轴和顶点坐标与a,h,k的值有关. 下面大家经过讨论之后,填写下表: y=a(x-h)2+k开口方向对称轴顶点坐标 a0 a0 四、议一议 投影片:(2,4.1D) (1)二次函数y=3(x+1)2的图象与二次函数y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么? (2)二次函数y=-3(x-2)2+4的图象与二次函数y=-3x2的图象有什么关系?它是轴对称
12、图形吗?它的对称轴和顶点坐标分别是什么? (3)对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y=3(x+1)2+4呢? 师在不画图象的情况下,你能回答上面的问题吗? 生(1)二次函数y=3(x+1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x+1)2的图象的对称轴是直线x=-1,顶点坐标是(-1,0).只要将y=3x2的图象向左平移1个单位,就可以得到y=3(x+1)2的图象. (2)二次函数y=-3(x-2)2+4的图象与y=-3x2的图象形状相同,只是位置不同,将函数y
13、=-3x2的图象向右平移2个单位,就得到y=-3(x-2)2的图象,再向上平移4个单位,就得到y=-3(x-2)2+4的图象y=-3(x-2)2+4的图象的对称轴是直线x=2,顶点坐标是(2,4). (3)对于二次函数y=3(x+1)2和y=3(x+1)2+4,它们的对称轴都是x=-1,当x-1时,y的值随x值的增大而减小;当x-1时,y的值随x值的增大而增大. .课堂练习 随堂练习 .课时小结 本节课进一步探究了函数y=3x2与y=3(x-1)2,y=3(x-1)2+2的图象有什么关系,对称轴和顶点坐标分别是什么这些问题.并作了归纳总结.还能利用这个结果对其他的函数图象进行讨论. .课后作业
14、 习题2.4 .活动与探究 二次函数y=(x+2)2-1与y=(x-1)2+2的图象是由函数y=x2的图象怎样移动得到的?它们之间是通过怎样移动得到的? 解:y=(x+2)2-1的图象是由y=x2的图象向左平移2个单位,再向下平移1个单位得到的,y=(x-1)2+2的图象是由y=x2的图象向右平移1个单位,再向上平移2个单位得到的. y=(x+2)2-1的图象向右平移3个单位,再向上平移3个单位得到y=(x-1)2+2的图象. y=(x-1)2+2的图象向左平移3个单位,再向下平移3个单位得到y=(x+2)2-1的图象. 板书设计 4.2.1二次函数y=ax2+bx+c的图象(一)一、1.比较
15、函数y=3x2与y=3(x-1)2的 图象和性质(投影片2.4.1A) 2.做一做(投影片2.4.1B) 3.总结函数y=3x2,y=3(x-1)2y=3(x-1)2+2的图象之间的关系(投影片2.4.1C) 4.议一议(投影片2.4.1D) 二、课堂练习 1.随堂练习 2.补充练习 三、课时小结 四、课后作业 备课资料 参考练习 在同一直角坐标系内作出函数y=-x2,y=-x2-1,y=-(x+1)2-1的图象,并讨论它们的性质与位置关系. 解:图象略 它们都是抛物线,且开口方向都向下;对称轴分别为y轴y轴,直线x=-1;顶点坐标分别为(0,0),(0,-1),(-1,-1). y=-x2的图象向下移动1个单位得到y=-x2-1的图象;y=-x2的图象向左移动1个单位,向下移动1个单位,得到y=-(x+1)2-1的图象.