收藏 分销(赏)

高中数学(北师大版)必修四教案:1.4-典型例题:正弦、余弦函数.docx

上传人:天**** 文档编号:3815035 上传时间:2024-07-20 格式:DOCX 页数:2 大小:84.60KB
下载 相关 举报
高中数学(北师大版)必修四教案:1.4-典型例题:正弦、余弦函数.docx_第1页
第1页 / 共2页
高中数学(北师大版)必修四教案:1.4-典型例题:正弦、余弦函数.docx_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

1、正弦、余弦例题分析例1.ABC中已知a = 6,A=30,求c我们熟知用正弦定理可得两解其有用余弦定理也可:由得c的二次方程c218c72 = 0解得c1=12或c2=6例2. 如图543四边形ABCD中,AB = 3,AD = 2内角A = 60、B = D = 90求对角线AC由于含AC的两三角形都只有2个条件,不能直接求解,简洁想到以下解法:(1) 设多个未知数,建立方程组求解如设BC = x,CD = y,则有AC2 = 9x2 = 4y2, 即有 946 = x2y2xy 联立、解出, (2) 引入角未知数BAC = 则DAC = 60即有关于的方程即 3cos (60) = 2 c

2、os 求出 , 但若洞察图形的几何特征,则有巧法(3) A、B、C、D四点共圆:且AC为该圆直径则由余弦定理求出,再由正弦定理,(4) 延长AB、DC交于E如图544则易知,AE = 4,BE = 1,马上可得本例凸显几何直觉的价值例3.若一扇形半径为R,中心角为2,这里,求此扇形图示这种内接矩形ABCD的最大面积依题意OB = OE = R ,AOE =DOE = ,要求其最大值的矩形面积S = ABBC,关键在选择适当变元来表示ABBC,由BC = 2BF我们选x =BOE为变元,马上有BC = 2R sin x,AOB = x,OAB = ,在OAB内由正弦定理得于是 积化和差得 当时,S有最大值:

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服