收藏 分销(赏)

江西省上高二中2021届高三上学期第四次月考-数学文-Word版含答案.docx

上传人:a199****6536 文档编号:3812464 上传时间:2024-07-20 格式:DOCX 页数:5 大小:336.24KB 下载积分:6 金币
下载 相关 举报
江西省上高二中2021届高三上学期第四次月考-数学文-Word版含答案.docx_第1页
第1页 / 共5页
江西省上高二中2021届高三上学期第四次月考-数学文-Word版含答案.docx_第2页
第2页 / 共5页


点击查看更多>>
资源描述
2021届高三班级第四次月考数学(文科)试卷 一、选择题(12×5=60分) 1、已知集合,集合,则( ) A.(-) B.(-] C.[-) D.[-] 2、a+b=0是=成立的 条件 ( ) A.充要 B.充分不必要 C.必要不充分 D. 既不充分也不必要 3、设是虚数单位,复数是纯虚数,则实数=( ) A、1 B、1 C、-1 D、0 4、已知,则( ) A. B. C. D. 5、要得到函数的图像,只需将函数的图像( ) A.向左平移个单位长度 B.向右平移个单位长度 C.向左平移个单位长度 D.向右平移个单位长 6、若ax2+bx+c<0的解集为{x|x<-2或x>4},则对于函数f(x)=ax2+bx+c应有( ) A.f(5)<f(2)<f(-1) B.f(5)<f(-1)<f(2) C.f(-1)<f(2)<f(5) D.f(2)<f(-1)<f(5) 7、若是上周期为5的奇函数,且满足,则的值为( ) A. B.1 C. D.2 8、已知数列{an}的通项公式,则= ( ) A. 0 B. -2022 C. 2022 D. 2021 9、已若当∈R时,函数且)满足≤1,则函数的图像大致为( ) 10、如图,正六边形的边长为1,点M为ED边上一点,则=( ) A、 B、 C、3 D 、-3 A B C D E F M 第10题图 第12题图 11、已知函数是定义在实数集上的奇函数,且当时成立(其中的导函数),若,,则的大小关系是 ( ) A. B. C. D. 12、如图,已知B、C是以原点为圆心,半径为1的圆与x轴的交点,P、Q是圆O上的定点满足∠POX=,OP⊥OQ,点A在劣弧PQ(包含端点)上运动,作AH⊥BC于H,若记=,则的取值范围是( ) A. B. C. D. 二、填空题(4×5=20分) 13、已知幂函数的图象过点).则的值为____________. 14、在中,已知,则 . 15、已知函数在处有极值为10,则的值等于 16、已知不等式对任意正整数恒成立,则实数的取值范围是 ________. 三、解答题(17、18、19、20、21各12分,22题10分) 17、在△ABC中,内角A,B,C的对边分别为a,b,c,若. (Ⅰ)求的值; (Ⅱ)若,且,求的值. 18、如图,是单位圆与轴正半轴的交点,点、在单位圆上,且,,,,四边形的面积为S . (1)求的值 (2)求的最大值及此时的值; 19、设的导数满足,其中常数. (1)求曲线在点处的切线方程; (2)设,求函数的极值. 20、设集合A为函数的定义域,集合B为函数的值域,集合为不等式 的解集. (1)求; (2)若,求的取值范围. 21、 已知,函数 且。 (1)求的解析式及单调递增区间: (2)将的图像向右平移单位得的图像,若在上恒成立,求实数的取值范围。 22、已知函数f(x)=|x+a|+|x-2|. (1)当a=-3时,求不等式f(x)≥3的解集; (2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围. 2021届高三班级第四次月考数学(文)试卷答题卡 一、选择题(每小题5分共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 二、填空题(本大题共4个小题,每小题5分,共20分) 13、 14、 15、 16、 三.解答题(共6个小题,共70分) 17、(12分) 18、(12分) 19、(12分) 20、(12分) 21、(12分) 22、(10分) 2021届高三班级第四次月考数学(文)试卷答案 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C C B C B C C C D B D 二、填空题(4×5=20分) 13、 14、 15、18 16、[4,5] 三、解答题 17解:(Ⅰ)由于, 由正弦定理得,所以 ……………………………4分 (Ⅱ)由于,,所以, 所以, 由余弦定理得,所以.……………………………8分 所以 即 ……………………………12分 18、解:(1)∵,, , ………………2分 ………………4分 (2)由已知得:, ……… 6分 ∴,, 又 ( 则的最大值为,此时 …… 12分 19、(1) 0 (0,3) 3 0 0 ↘ 微小 ↗ 极大 ↘ (12分) 20、解(1)由于,解得,又 所以。所以 …………..6分 (2)由于 由,知 当时,由,得,不满足 当时,由,得,………10分 欲使则,解得:或,又, 所以,综上所述,所求的取值范围是 ………12分 21、解 (1) 1分 由,知函数的图像关于直线对称, 2分 所以,又,所以 3分 即 所以函数的递增区间为; 4分 (2)易知 5分 即在上恒成立。 令 由于,所以 7分 当,在上单调递减, ,满足条件; 当,在上单调递增, ,不成立; ③ 当时,必存在唯一,使在上递减,在递增,故只需, 解得; 11分 综上,由①②③得实数的取值范围是:。 12分 22、解 (1)当a=-3时,f(x)= 当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1; 当2<x<3时,f(x)≥3无解; 当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4. 所以f(x)≥3的解集为{x|x≤1或x≥4}. (2)f(x)≤|x-4|⇔|x-4|-|x-2|≥|x+a|. 当x∈[1,2]时,|x-4|-|x-2|≥|x+a| ⇔4-x-(2-x)≥|x+a|⇔-2-a≤x≤2-a. 由条件得-2-a≤1且2-a≥2,即-3≤a≤0. 故满足条件的a的取值范围为[-3,0]. 版权全部:高考资源网() 版权全部:高考资源网()
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服