收藏 分销(赏)

2021人教A版高三数学(文)二轮复习-真题感悟+考点整合-选修4-4-Word版含解析.docx

上传人:精*** 文档编号:3811830 上传时间:2024-07-20 格式:DOCX 页数:2 大小:44.56KB
下载 相关 举报
2021人教A版高三数学(文)二轮复习-真题感悟+考点整合-选修4-4-Word版含解析.docx_第1页
第1页 / 共2页
2021人教A版高三数学(文)二轮复习-真题感悟+考点整合-选修4-4-Word版含解析.docx_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

1、真题感悟1(2022安徽卷)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位已知直线l的参数方程是(t为参数),圆C的极坐标方程是4cos ,则直线l被圆C截得的弦长为()A.B2 C.D2解析由题意得,直线l的直角坐标方程为yx4,圆C的直角坐标方程为(x2)2y24,圆心到直线l的距离d,直线l被圆C截得的弦长为22.答案D2(2022湖北卷)已知曲线C1的参数方程是(t为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是2.则C1与C2交点的直角坐标为_解析由消去t得C1的直角坐标方程为yx(x0),曲线C2的直角坐

2、标方程为x2y24.由解得x,y1.答案(,1)3(2022湖南卷)在平面直角坐标系中,倾斜角为的直线l与曲线C:( 为参数)交于A,B两点,且|AB|2.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则直线l的极坐标方程是_解析曲线(为参数),消去参数得(x2)2(y1)21.由于|AB|2,因此|AB|为圆的直径,故直线过圆的圆心(2,1),所以直线l的方程为y1x2,即xy10,化为极坐标方程为cos sin 1,即(cos sin )1.答案(cos sin )14(2022重庆卷)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标

3、方程为sin24cos 0(0,02),则直线l与曲线C的公共点的极径_.解析参数方程化为直角坐标方程yx1,由sin 24cos 0,得2sin 24cos 0,其对应的直角坐标方程为y24x0,由联立,解得.答案考点整合1直角坐标与极坐标的互化把直角坐标系的原点作为极点,x轴正半轴作为极轴,且在两坐标系中取相同的长度单位设M是平面内的任意一点,它的直角坐标、极坐标分别为(x,y)和(,),则2直线的极坐标方程若直线过点M(0,0),且极轴到此直线的角为,则它的方程为:sin()0sin(0)几个特殊位置的直线的极坐标方程:(1)直线过极点:;(2)直线过点M(a,0)(a0)且垂直于极轴:

4、cos a;(3)直线过M且平行于极轴:sin b.3圆的极坐标方程若圆心为M(0,0),半径为r的圆方程为:220cos(0)r20.几个特殊位置的圆的极坐标方程(1)当圆心位于极点,半径为r:r;(2)当圆心位于M(r,0),半径为r:2rcos ;(3)当圆心位于M,半径为r:2rsin .4直线的参数方程经过点P0(x0,y0),倾斜角为的直线的参数方程为(t为参数)设P是直线上的任一点,则t表示有向线段的数量5圆的参数方程圆心在点M(x0,y0),半径为r的圆的参数方程为(为参数,02)6圆锥曲线的参数方程(1)椭圆1的参数方程为(为参数)(2)双曲线1的参数方程为(为参数) (3)抛物线y22px(p0)的参数方程为(t为参数).

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服