资源描述
专题讲座一 范围与最值问题
最值、范围问题是历年高考的热点问题,经久不衰.最值与范围问题多在函数与导数、数列、立体几何、圆锥曲线中考查.解题的关键是不等关系的建立,其途径很多,诸如判别式法,均值不等式法,变量的有界性法,函数性质法,数形结合法等等.下面介绍一下函数与导数中的最值与范围问题.
函数的最值
函数的最值问题是其他最值问题的基础之一,很多最值问题最终总是转化为函数(特殊是二次函数)的最值问题.求函数最值的方法有:配方法、均值不等式法、单调性、导数法、判别式法、有界性、图象法等.
(1)对a,b∈R,记max{a,b}=函数f(x)=max{|x+1|,|x-2|}(x∈R)的最小值是________;
(2)已知函数y=(ex-a)2+(e-x-a)2(a∈R,a≠0),则函数y的最小值是________.
[解析] (1)由|x+1|≥|x-2|,
得(x+1)2≥(x-2)2,解得x≥.
所以f(x)=其图象如图所示.
由图形,易知当x=时,函数有最小值,所以
f(x)min=f==.
(2)y=(ex-a)2+(e-x-a)2=(ex+e-x)2-2a(ex+e-x)+2a2-2.
令t=ex+e-x,则f(t)=t2-2at+2a2-2.
由于t≥2,
所以f(t)=t2-2at+2a2-2=(t-a)2+a2-2的定义域为[2,+∞).
由于抛物线y=f(t)的对称轴为t=a,
所以当a≤2且a≠0时,ymin=f(2)=2(a-1)2;
当a>2时,ymin=f(a)=a2-2.
又f(t)的定义域为[2,+∞),故y的最小值是a2-2.
[答案] (1) (2)a2-2
[规律方法] 第(1)题是将问题转化为分段函数的最值问题后,再利用数形结合的方法求解函数最值问题,其关键是先画出图形,从而借助图形直观地解决问题.第(2)题首先利用换元法转化为二次函数,再利用二次函数的性质求最值,求解中要特殊留意自变量的取值范围.
实际问题中的最值
在数学应用性问题中经常遇到有关用料最省、成本最低、利润最大等问题,可考虑建立目标函数,转化为求函数的最值.
(2021·江苏徐州检测)现有一张长为80 cm,宽为60 cm的长方形铁皮ABCD,预备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失,如图,若从长方形ABCD的一个角上剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为x(cm),高为y(cm),体积为V(cm3).
(1)求出x与y的关系式;
(2)求该铁皮盒体积V的最大值.
[解] (1)由题意得x2+4xy=4 800,
即y=,0<x<60.
(2)铁皮盒体积V(x)=x2y=x2·
=-x3+1 200x,
V′(x)=-x2+1 200.
令V′(x)=0,得x=40,
由于x∈(0,40)时,V′(x)>0,V(x)是增函数;
x∈(40,60)时,V′(x)<0,V(x)是减函数,
所以V(x)=-x3+1 200x在x=40时取得极大值,也是最大值,且最大值为32 000 cm3.
所以该铁皮盒体积V的最大值是32 000 cm3.
[规律方法] 本题是求几何体体积的最值,求解思路是构建目标函数,再利用导数争辩函数的最值.
参数范围的确定
函数的最值多与参数范围结合命题,求最值时,多利用分类争辩思想,由最值问题求参数可转化为恒成立问题求解.
(2021·陕西西安模拟)已知函数f(x)=(a≠0,a∈R).
(1)求函数f(x)的单调区间;
(2)当a=1时,若对任意x1,x2∈[-3,+∞),有f(x1)-f(x2)≤m成立,求实数m的最小值.
[解] f′(x)=.
令f′(x)=0,解得x=a或x=-3a.
(1)当a>0时,f′(x),f(x)随着x的变化如下表:
x
(-∞,-3a)
-3a
(-3a,a)
a
(a,+∞)
f′(x)
-
0
+
0
-
f(x)
微小值
极大值
函数f(x)的单调递增区间是(-3a,a),函数f(x)的单调递减区间是(-∞,-3a),(a,+∞).
当a<0时,f′(x),f(x)随着x的变化如下表:
x
(-∞,a)
a
(a,-3a)
-3a
(-3a,+∞)
f′(x)
-
0
+
0
-
f(x)
微小值
极大值
函数f(x)的单调递增区间是(a,-3a),函数f(x)的单调递减区间是(-∞,a),(-3a,+∞).
(2)当a=1时,由(1)得f(x)是(-3,1)上的增函数,是(1,+∞)上的减函数.
又当x>1时,f(x)=>0,
所以f(x)在[-3,+∞)上的最小值为f(-3)=-,最大值为f(1)=.
所以对任意x1,x2∈[-3,+∞),f(x1)-f(x2)≤f(1)-f(-3)=.
所以对任意x1,x2∈[-3,+∞),使f(x1)-f(x2)≤m恒成立的实数m的最小值为.
[规律方法] 恒成立问题可以转化为我们较为生疏的求最值的问题进行求解,如本题中求m的最小值,转化为求f(x1)-f(x2)的最大值.
1.(2022·高考浙江卷改编)已知函数f(x)=x3+3|x-a|(a>0),若f(x)在[-1,1]上的最小值记为g(a).求g(a).
解:由于a>0,-1≤x≤1,所以
(1)当0<a<1时,
若x∈[-1,a],则f(x)=x3-3x+3a,f′(x)=3x2-3<0,故f(x)在(-1,a)上是减函数;
若x∈[a,1],则f(x)=x3+3x-3a,f′(x)=3x2+3>0,故f(x)在(a,1)上是增函数.
所以g(a)=f(a)=a3.
(2)当a≥1时,有x≤a,则f(x)=x3-3x+3a,f′(x)=3x2-3<0,故f(x)在(-1,1)上是减函数,所以g(a)=f(1)=-2+3a.
综上,g(a)=
2.某集团为了获得更大的利润,每年要投入确定的资金用于广告促销.经调查,每年投入广告费t(百万元),可增加销售额为-t2+5t(百万元)(0≤t≤3).
(1)若该集团将当年的广告费把握在三百万元以内,则应投入多少广告费,才能使集团由广告费而产生的收益最大?
(2)现在该集团预备投入三百万元,分别用于广告促销和技术改造.经预算,每投入技术改造费x(百万元),可增加的销售额约为-x3+x2+3x(百万元).请设计一个资金支配方案,使该集团由这两项共同产生的收益最大.
解:(1)设投入广告费t(百万元)后由此增加的收益为f(t)(百万元),则
f(t)=(-t2+5t)-t=-t2+4t=-(t-2)2+4(0≤t≤3).
所以当t=2时,f(t)max=4,
即当集团投入两百万元广告费时,才能使集团由广告费而产生的收益最大.
(2)设用于技术改造的资金为x(百万元),则用于广告促销的费用为(3-x)(百万元),则由此两项所增加的收益为
g(x)=+[-(3-x)2+5(3-x)]-3=-x3+4x+3(0≤x≤3).
对g(x)求导,得g′(x)=-x2+4,
令g′(x)=-x2+4=0,
得x=2或x=-2(舍去).
当0≤x<2时,g′(x)>0,即g(x)在[0,2)上单调递增;
当2<x≤3时,g′(x)<0,即g(x)在(2,3]上单调递减.
∴当x=2时,g(x)max=g(2)=.
故在三百万元资金中,两百万元用于技术改造,一百万元用于广告促销,这样集团由此所增加的收益最大,最大收益为百万元.
3.(2021·贵州省六校联盟第一次联考)已知函数f(x)=2ln x-x2+ax(a∈R).
(1)当a=2时,求f(x)的图象在x=1处的切线方程;
(2)若函数g(x)=f(x)-ax+m在上有两个零点,求实数m的取值范围.
解:(1)当a=2时,f(x)=2ln x-x2+2x,f′(x)=-2x+2,切点坐标为(1,1),
切线的斜率k=f′(1)=2,则切线方程为y-1=2(x-1),即y=2x-1.
(2)g(x)=2ln x-x2+m,
则g′(x)=-2x=,
∵x∈,∴当g′(x)=0时,x=1.当<x<1时,g′(x)>0;当1<x<e时,g′(x)<0.
故g(x)在x=1处取得极大值g(1)=m-1.
又g=m-2-,g(e)=m+2-e2,g(e)-g=4-e2+<0,则g(e)<g,
∴g(x)在上的最小值是g(e).
g(x)在上有两个零点的条件是,解得1<m≤2+,
∴实数m的取值范围是.
4.(2021·河南省洛阳市统考)已知函数f(x)=+ln x+1.
(1)若函数f(x)在[1,2]上单调递减,求实数a的取值范围;
(2)若a=1,k∈R且k<,设F(x)=f(x)+(k-1)·ln x-1,求函数F(x)在上的最大值和最小值.
解:(1)由题设可得f(x)的定义域为(0,+∞),f′(x)=.
明显a≠0.∵函数f(x)在[1,2]上单调递减,
∴当x∈[1,2]时,不等式f′(x)=≤0恒成立,
即≥x恒成立.
∴≥2,∴0<a≤,
∴实数a的取值范围是.
(2)a=1,k∈R,f(x)=+ln x+1,
F(x)=f(x)+(k-1)ln x-1=+kln x,
F′(x)=+=.
①若k=0,则F′(x)=-,在上,恒有F′(x)<0,∴F(x)在上单调递减,
∴F(x)min=F(e)=,F(x)max=F=e-1.
②若k≠0,F′(x)==.
(ⅰ)若k<0,在上,恒有<0,
∴F(x)在上单调递减,
∴F(x)min=F(e)=+kln e=+k-1,
F(x)max=F=e-k-1.
(ⅱ)若k>0,k<,则>e,x-<0,
∴<0,
∴F(x)在上单调递减,
∴F(x)min=F(e)=+kln e=+k-1,
F(x)max=F=e-k-1.
综上,当k=0时,F(x)min=F(e)=,
F(x)max=F=e-1;
当k≠0,且k<时,F(x)min=F(e)=+k-1,
F(x)max=F=e-k-1.
展开阅读全文