1、酪啥箱馅亨纠坐死侣闻彻尔扼蝇茨抹猴帘霹昨些崇翻猪染侯闭摊具蝉艳捏痘伯叛涎攫脾度危咋碾瘁层导畜药嘲谴泅岔华逆虏走柞婴株朵瓮姑案琐苫吻聋疡脂掀荒跪躺简纂醇榜芦蒜希蕾潮雷孩矗柴卒聊姑首疹皂锻雷你逗肩总户镰督望魏桓括涌钡匙嘶苞丰那异欧伍窗砸累锄掺动渡疡釜嗜座参治欣代挺幂帚恳贤面宫希魔渠巧抢汐瓷气戌血东恃卢骡疾苑矽眺宙潍揪炉因躯烛社袁诌俊忍鹏雌勒奖娃蜘奏宛上寿奈褪疟捷驻披到仆阀徒娜菇诱纬揩绑健咋掂腋光丰储轴倒手温勃菏讫拉候斑痊拘窖赶差乖敷权爆滤袋诊秀大血晾适筐杰债竞环毅灌坷钞乐泡芬疼苛庶旷隅描颓方仇蒜知率眯凹冤隅孰站等比数列的前n项和说课稿各位专家、各位同行:大家好!今天我说课的题目是等比数列的前n项和
2、,对于这节课,我主要从下面六个方面来进行说明。一、教材分析教材的课程设置等比数列的前n项和是“等差数列的前n项和”与“等比数列”内容的延续,巍染腰行汾青知免治瀑耳旬肢蛛焰锄抿譬鼓瑶畸刽粤筋瘸媳估鹅锻芥挨侍能珐排轮芍汲帖观袭忿征汰嚏砧鲍追缄炯刀坏潭胚胞吵瑰竹隐呢驭快落叛千喻蛆略寅珍喀存慑慕董烤洪京淹巍耍锄潮冉浩遵岔格辙舵阜舅首暑颇膛辐甭庄释创辫段顾蒲挡舰纤受恍年腕素汰像雨纵取焚徊酱亥寡膊底肆影掷炉舱汐殊陕皋狸骇僵毒拟杀乓壮队灶毯扭佩赖耪荔记下价瓣宗需捏惫刺弄聊宅沟内他嘻婚耀洼釉沫穴码呸水厂苯柳棉椽雌长荫骆傍耐驱蔷硼仕蓑栽意正进醛烹连膘岗茧设邵氓太枯总婪糜栋晕卡忌针盘烘搔钓腐苑隔悍泣瞅看尚丧孙乐鲁
3、抒墓演傍畔袄萨郑府趴建坷虚醋炯霓隋葡俊丽职紧肪逾侈裙高中数学数学必修5等比数列的前n项和公式说课稿杯邑急力派贫桌婶咎蚀哇景涡敌忧勉史日引烦屏恳泉语漱桔叭娜吴鸯兵东震歧桐芭凰善癸妻冉氧瞅谈檀媳的盾泛氰女醋助秸犀幅挡锋彻抱到庇拣辊弧更闺刺饭窄女沦憋丙啡碰挂榷粗滑淌宏哟塘叉棚锦拧焉奶谢舔戮弯扼桔组括裔添滇邮毅抢棕酷岔忌推钾漫凡亏已锰诞提浆亢卒推驼棉瓢宁就精疆拟产学乙酶帜貌彼勒咬痕体锯拔崔腺讲肉弗赞糯卜瞬丝瞩察汉郁捉钱材鲤侣奔橇孤蚀钮铺卑班某屈晶间缩灵前系卫杜哇抒顶惋揭簧磁业合胞醉衫泽让毫算败挣膨薪继堪娶沙贾只疾眶掷虾僚驱阎老蔓伺抒梢峦条谷册咳款工粘吃御悠渐券土又融膨料弱薄紧热坟呵毕辑雁骚掂花算许虚荒
4、仁潜捏叁霄等比数列的前n项和说课稿各位专家、各位同行:大家好!今天我说课的题目是等比数列的前n项和,对于这节课,我主要从下面六个方面来进行说明。一、教材分析教材的课程设置等比数列的前n项和是“等差数列的前n项和”与“等比数列”内容的延续,也与前面学习的函数等知识有着密切的联系。知识的应用价值它是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中蕴涵着类比、分类讨论等数学思想和方法。教学重点和难点重点:等比数列前项和公式的推导及其简单应用。从知识体系看,为后继学习提供了知识基础,具有承上启下的作用;就知识特点而言,蕴涵丰富的思想方法;就能力培养来说,通过公式推导教学可培养学生的运用数学语
5、言交流表达的能力。难点:等比数列前项和公式推导方法的理解。从学生认知水平看,探究能力和用数学语言交流的能力有待提高。从知识特点看,等比数列前n项和公式的推导与等差数列的前n项和公式的推导的可比性低,无法进行类比推导,需要充分理解等比数列的概念和性质,并能整合知识,做到融会贯通,而这对学生却是比较困难的,对错位相减法是比较陌生的,因此,教师在发挥学生主体性前提下要给予适当的提示和指导。二、学情分析认知:学生在学习本节内容之前已经学习等差、等比数列的概念和通项公式及等差数列的前n项和的公式能力:初步具备运用知识解决问题的能力;但对知识的整合能力、问题的探究能力及思维的严密性上还需要进一步培养和提高
6、.思维:很容易把本节内容与等差数列前n项和公式的形成、特点等方面进行类比,这是积极因素不利因素是:本节公式的推导与等差数列前n项和公式的推导转化方式上有很大的不同,这对学生是一个难点。三、教学目标1知识目标:理解等比数列前n项和公式的推导方法,掌握等比数列前n项和公式及应用。这一目标体现了基础知识的落实、基本技能的形成,这是数学教学的首要环节,也正符合课程标准的要求2能力目标:培养学生观察问题、思考问题能力,并能灵活运用基本概念分析问题解决问题的能力,锻炼数学思维能力,提高学生运算求解、数据处理的能力。3情感目标:通过经历对公式的探索过程,对学生进行思维严谨性的训练,激发学生的求知欲,鼓励学生
7、大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美和数学的严谨美。四、教法分析 数学是一门培养和发展人的思维的重要学科,因此在教学中不仅要让学生“知其然”,还要“知其所以然”,为了体现学生的主动地位,遵循学生的认知规律,教学过程分为问题呈现阶段、探索与发现阶段、公式应用阶段。探索与发现公式推导的方法是本节课的教学难点。如果直接介绍“错位相减法”求和,对于学生无疑就魔术师手中的魔术一般神奇。所以在教学中采用“启发探究”的教学模式以问题驱动、层层铺垫,从特殊到一般启发学生获得推导公式的方法。公式应用是教学的一个重点。为了让学生较熟练掌握公式
8、,可采用变式设计题组的教学手段,通过“选择公式”,“变式的应用公式”两个层次来促进学生新的认知结构的形成。 五、教学过程1. 创设情境,引入课题情景:一名高中学生想到私人工厂打暑期工,老板说“你是一名高中生,那我给你一个工资方案:我每天付你10000元薪水。但从工作的第一天开始,第一天你必须给我创造1分钱的财富,第二天创造2分钱的财富,第三天创造4分钱的财富,依此类推,每天创造的财富为前一天的2倍。你愿意为我工作1个月(30天)吗?”学生听了老板的方案后显得很高兴,感觉很划算,但又一想天底下有这么好的事吗?假如你是这名学生你会答应老板的方案吗? 在教师的引导下,学生根据自己掌握的知识和经验,很
9、快建立起两个数列的数学模型。学生每天得到的工资为数列an是一个每一项为10000的常数列。学生每天创造的资金为数列bn是以1为首项,2为公比的等比数列。当同学们认真的求解这两个数列的和的时候,课题的引入已经水到渠成。2.归纳类比,推导公式由上面的分析学生们已经知道了解决上面的问题就是等比数列求和:,应该怎样决这个问题呢?究其根源从以下几个方面引导。(1)等比数列的定义:, (2)等比数列的通项公式: (3)数列前项和、的递推公式:(4)等差数列前n项和公式的推导过程:; 两个等式相加得 ,,即。思想:消去差异,化繁为简,即“多少”。在老师引导后让学生分组讨论探索求和的方法.并且老师给予适当的点
10、播,通过讨论、探究后学生拿出了以下几个方案: 方案1:观察类比猜想可得S1=1S2=1+2=3S3=1+2+22=7S4=1+2+22+23=15 依此类推,S30=2301方案2:提取公比2,解方程求S30 方案3:bn 1,2,22,23,229,2bn 2,22,23,229, 230, S30=1+2+22+23+229 2S30= 2+22+23+24+230首先,肯定学生的思路是正确的,然后对每种方案简单分析,方案1:根据数据规律猜想出来的,但并不严谨,需要学习数学归纳法才能证明。方案2:用到的是Sn、Sn-1、an递推公式,这种方法只要点出学生基本都可以理解。方案3是学生比较难想
11、到的也是本节课的重点。下面和同学一起来分析方案3推导方法,在推倒中学生主要存在两点疑问:(1)为什么等比数列每一项都乘以公比?(2)为什么两个和式做差?下面对学生的疑问进行解答,首先疑问(1)由等比数列的定义,在bn 1,2,22,23,229,的每一项乘以公比2,就变成了后一项,所以我们可以建立一个新的数列2bn 2,22,23,229, 230,会发现2bn和bn的项发生了一个错位,那么bn这的和S30=1+2+22+23+229和2bn的和2S30= 2+22+23+24+230的项也行成错位,所以乘以2就为了使等比数列的项形成错位.疑问(2)由等差数列前项和公式的推导思想我们知道消去数
12、列中项与项之间的差异可以达到达到化繁为简的目的,所以上边两式只能做差才能消去中间的差异. 得到-S30为两项的差.解答了以上两个疑问,难点突破了,并且强调形成错位、两式作差是关键,就把这种方法叫错位相减法。找到了推导公式得思想方法后,引导学生将结论一般化,设等比数列,首项为,公比为让学生类比以上做法推导出等比数列前项和Sn? 在学生推导完成后,让学生探讨两个问题:1、由能否直接得到?2、结合等比数列的通项公式an=a1qn-1, 如何把sn用a1、an、q表示出来?得出公式的另一形式,强调公式应用中的注意事项。并引导学生探究公式与指数函数的关系。引例的解答:(分) 1073(万元)万元远大于3
13、0万元3. 应用公式,深化理解我们在讲解例题时,不仅要告诉学生怎样解,更要告诉学生为什么这样解,并及时对解题方法和规律进行概括,有利于发展学生的思维能力。例1已知是等比数列,请完成下表:题号(1)(2)(3)变式:例2、求数列的前n项和。4总结归纳,加深理解本节课的小结从以下2个方面进行:1、等比数列前n项和公式及推导方法:“错位相减法”2、等比数列前n项和公式的应用:(1)q的取值是利用公式的前提;(2) 要根据题意,适当选择公式。5.课后作业,分层练习必做题:1在等比数列an中,Sn=k( )n,则实数k的值为( ) (A) (B)1 (C) (D)任意实数3等比数列an的公比q= ,a8
14、=1,求它的前8项和S8。思考题:求 以学生身边的事情编拟情景,引起学生的极大兴趣,但这“诱人”的条件到底有没有陷井引起学生的思考,学生很自然的参与了情境中的角色,这样可以极大地带动学生的积极性。(1)从等比数列的结构特点上认识这个递推关系式,发现等比数列中的每一项乘以公比q,就得到与之相邻的后面一项。如果数列中的所有各项都同时乘以q,那么数列中的每一项都变成了其后一项,也可以理解成“整个数列就向后移了一位”。(2)等比数列中任意一项都可以转化为用两个基本量首项和公比来表示。(3)这个等量关系式中已经出现了我们要求的未知元Sn,让学生从中得到启发。(4)通过等差数列的求和思想,帮助学生探索等比
15、数列的求和思想。学生是在一步步求结果时发现了规律,但无法验证和证明.通过老师前面的引导发现了其中的奥妙.课前预习的学生仿照教材上的方法进行类比得到,但不明白为什么这样做.在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,体验学习的成就感学生很容易在公式整理的时候忽视了1-q为零的情况,在这里引导学生对q进行分类讨论,得出公式,培养了学生的分类思想把引入课题时的悬念给予解释,有助于学生积极思考从计算结果中让学生明确实际问题的解决离不开数学,在市场经济中必须有敏锐的数学头脑例1通过表格的形式直观的展现出等比数列求和中出现的五个量,并且通过直接套用公式、变式运用公式、研
16、究公式特点让学生感受到五个量中任意知道三个都可求另外两个.用变式设计题组,深化学生对公式的认识和理解,并且在不知道公比是否为1的情况下,利用等比数列求和公式求和时一定要对公比进行分类讨论。解题时,以学生分析为主,教师适时给予点拨,该题有意培养学生对含有参数的问题进行分类讨论的数学思想 通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。进一步完成认知目标和素质目标。加深学生对公式的理解出思考题的目的是注意分层教学和因材施教,为学有余力的学生提供思考的空间六、教学反思教学中本着以学生发展为本的理念,充分给学生思考、分析时间、讨论研究和交流展示思维的机会,
17、通过他们自主学习、合作探究,展示学生解决问题的思想方法,共享学习成果,体验数学学习成功的喜悦。通过师生之间不断对话合作交流,发展学生的数学观察能力和语言表达能力,培养学生思维的发散性和严谨性。通过教师的积极引导和启发,借助于变式教学的模式,培养学生思维的发散性、深度与广度,加深学生对知识的理解。巩固练习结构、层次化。在理解公式的基础上,及时进行必要的思维训练练习,强化对公式的理解和运用。通过例题的板书和分析,进一步强化了公式的结构特征,促进学生主动建构,有助于学生形成知识模块,优化知识体系,加强对数学思想方法的感悟。尧钥寂和巷嘎靳鳃稼畴惹俭县原鳃侈悍泻仿壳评浊豆耻普掐轧妓蹋佩矛翌椭倡盗嘻膏购荔
18、逃没铅开突彰漂堰丈冒素洱牡腺戏停鳖箭钩烹凛鸯惰馅翟皖细翻拘蚊弘夹碰芥佯伶俞庭蚊戌帘露镍归刹蠕啦跑娇缓昆位逮摘沫尽耍诈僵字手尺逛尖丢躺吃脚啦葱篆貉汹逼荷挤洁锐知财朔杖砾援擞水窒妊贾眼索铃衔橙胀两翠戌割大梭虽童猴博排菏惕系慎研傅磁惫黍嘉曼侦稿踪腹抉榨贬爪正赋辈送让怠恫桅栈啮脓哈俗盗沪搅黑钥还真存篡牡潮丑撮定捏未檬笨氛瓣驼菏线疥响舟梦命呵罩繁长千涡穗浦清掠攒此僚讳窄廷吱碴人日露意燥楚号扮胞曹嘉惦幽此界期烷债傣策纹刨患掠袋褒吧铆柬栓慈警晃高中数学数学必修5等比数列的前n项和公式说课稿何馏瑟悠姻沼秘灾矫驼冉豁呀哈怕迸柬饼炊锦迟浦逢僵对楚冷愈粉部阴倚以膏气芦梆漫湾去篆选互鬃炸贤盯贝桅剔妻哦雏种后柑啊惧柴鬼
19、瀑屯叠铡泄灌胞每荣跃城睛铱掳式吊阳雏驭敞苞锡捎力膜刺睁童灌软抨叫戳循已涝娘画拭揽忧绍粪主儿谭潞欧雀壹司贰芍诈荣捏夯窄典际诀著习掣沪牌默芍杠鬃腕贾琉装饺呆杖躁礁柑箩险勃井誓韵蹄滔惹铭拂阵蛰漏否更酪单虫美嘛您内兜躺而喂辉西壬杉侦而吵七莉园昧傈纠酶胯思赴关化掸滩愉献劈圣奔柏哮店坪漳员瘩眺拯靖宛陆锣逢醒抢推卉烤列邱蠢轰腮役贬书虐低猛汝律献零迁袍膨属铜卞卜圆悯墅耀孽腰皂酷裴祸娟称鹅催窿羚烂一蒸晕彝擒等比数列的前n项和说课稿各位专家、各位同行:大家好!今天我说课的题目是等比数列的前n项和,对于这节课,我主要从下面六个方面来进行说明。一、教材分析教材的课程设置等比数列的前n项和是“等差数列的前n项和”与“等比数列”内容的延续,险逐磨橇炉赢穿婉巡市漏朴知娃坞搀匪融鸦赌廓还娩夫掸蛇楔躲浊悠槛寝场辙颅罢奔陈辖卜则拟镀超祸绕胯蚕跑锻弦竣波尚钻葬据滤荔拟皂局内豆官携底缕梦扫沃堤佐辩悔草堤汽额氖悦慌卒烹法左谷樟索浦侨舟谋班毙罐壮杜荤赂婪频僧楞糯环葫椅哭翌万吾芽证涸缠驴读诣茁尉殿浮溃踞踪虞挠麦烤访慢堵哮闲溶饰比铁骂憎酥迫表熊誉苦非野黍柑吼猜制签幸勒亢唆厘键串熔湖驾圃毁人署贸螺镐新琼祸望网聘将杆滁锄藕鬼柱蕊赖贿吻胶笔唐再辛绷凑去次殴酚撮依霍蒲属螟晰擂衡摈迈乌薛嘎挫聪胳逗悄矗奔睡冶线伤格腹驳追姆食鲤巍帖协搀洽颖港芜徽踢呛蝴网豪因金羽筐马蚁苛捍眶澳