1、 . 平面向量的数量积的性质【问题导思】已知两个非零向量a,b,为a与b的夹角.1.若ab0,则a与b有什么关系?【提示】ab0,a0,b0,cos 0,90,ab.2.aa等于什么?【提示】|a|a|cos 0|a|2.(1)如果e是单位向量,则aeea|a|cosa,e;(2)abab0;(3)aa|a|2即|a|;(4)cosa,b(|a|b|0);(5)|ab|a|b|.平面向量数量积的运算律(1)交换律:abba;(2)分配律:(ab)cacbc;(3)数乘向量结合律:对任意实数,(ab)(a)ba(b).向量的数量积运算(2013海淀高一检测)已知|a|5,|b|4,a与b的夹角为
2、120,(1)求ab;(2)求a在b方向上的射影的数量.【思路探究】利用数量积的定义及几何意义求解.【自主解答】(1)ab|a|b|cos 54cos 12054()10.(2)|a|cos 5cos 120,a在b方向上的射影的数量为.1.在书写数量积时,a与b之间用实心圆点“”连接,而不能用“”连接,更不能省略不写.2.求平面向量数量积的方法(1)若已知向量的模及其夹角,则直接利用公式ab|a|b|cos .(2)若已知一向量的模及另一向量在该向量上的射影的数量,可利用数量积的几何意义求ab.1.(2013玉溪高一检测)已知|a|6,|b|3,ab12,则a在b方向上的射影的数量是()A.
3、4B.4C.2D.2【解析】cos,向量a在向量b方向上的射影的数量为|a|cos64,故选A.【答案】A2.已知|a|6,e为单位向量,当向量a、e之间的夹角分别等于45,90,135时,分别求出ae及向量a在e方向上的正射影的数量.【解】当向量a和e之间的夹角分别等于45,90,135时,|a|e|cos 45613;|a|e|cos 906100;|a|e|cos 13561()3.当向量a和e之间的夹角分别等于45,90,135时,a在e方向上的正射影的数量分别为:|a|cos 6cos 453;|a|cos 6cos 900;|a|cos 6cos 1353.与向量模有关的问题已知向
4、量a与b的夹角为120,且|a|4,|b|2,求:(1)|ab|;(2)|(ab)(a2b)|.【思路探究】利用aaa2或|a|求解.【自主解答】由已知ab|a|b|cos 42cos 1204,a2|a|216,b2|b|24.(1)|ab|2(ab)2a22abb2162(4)412,|ab|2.(2)(ab)(a2b)a2ab2b216(4)2412,|(ab)(a2b)|12.1.此类求模问题一般转化为求模平方,与数量积联系.2.利用aaa2|a|2或|a|,可以实现实数运算与向量运算的相互转化.设e1、e2是夹角为45的两个单位向量,且ae12e2,b2e1e2,试求|ab|的值.【
5、解】ab(e12e2)(2e1e2)3(e1e2),|ab|3(e1e2)|3|e1e2|333.与向量夹角有关的问题(2014济南高一检测)若向量a,b,c两两所成的角均为120,且|a|1,|b|2,|c|3,求向量ab与向量ac的夹角的余弦值.【思路探究】先利用已知条件,分别求出(ab)(ac),|ab|和|ac|的大小,再根据向量的夹角公式求解.【自主解答】(ab)(ac)a2abacbc112cos 12013cos 12023cos 120,|ab|,|ac|,cos ,所以向量ab与ac的夹角的余弦值是.1.求向量a,b夹角的流程图求|a|,|b|计算ab计算cos 结合0180
6、,求解2.当题目中涉及向量较多时,可用整体思想代入求值,不必分别求值,以避免复杂的运算.(1)(2014辽宁师大附中高一检测)若向量a与b不共线,ab0,且cab,则a与c的夹角为()A.0 B. C. D.(2)(2014贵州省四校高一联考)若|a|2,|b|4且(ab)a,则a与b的夹角是()A. B. C. D.【解析】(1)acaaaaba2a20,又a0,c0,ac,a与c的夹角为,故选D.(2)因为(ab)a,所以(ab)aa2ab0,即aba24,所以cos,又因0,所以a与b的夹角是 ,故选A.【答案】(1)D(2)A混淆两向量夹角为钝角与两向量数量积为负之间关系致误设两向量e
7、1,e2满足:|e1|2,|e2|1,e1,e2的夹角为60.若向量2te17e2与向量e1te2的夹角为钝角,求实数t的取值范围.【错解】由已知得e1e2211,于是(2te17e2)(e1te2)2te(2t27)e1e27te2t215t7.因为2te17e2与e1te2的夹角为钝角,所以2t215t70,解得7t.【错因分析】当两向量反向共线时,其数量积为负,但夹角不是钝角而是平角.【防范措施】若两向量的夹角为钝角,则这两向量的数量积为负;反之不成立,因为两向量反向共线时,夹角为平角,即180,其数量积也为负.【正解】由已知得e1e2211,于是(2te17e2)(e1te2)2te(
8、2t27)e1e27te2t215t7.因为2te17e2与e1te2的夹角为钝角,所以2t215t70,解得7t.但是,当2te17e2与e1te2异向共线时,它们的夹角为180,也有2t215t70,这是不符合题意的.此时存在实数,使得2te17e2(e1te2),即2t且7t,解得t.故所求实数t的取值范围是7,.1.两向量a与b的数量积是一个实数,不是一个向量,其值可以为正(当a0,b0,090时),也可以为负(当a0,b0,90180时),还可以为0(当a0或b0或90时).2.数量积对结合律一般不成立,因为(ab)c|a|b|cosa,bc是一个与c共线的向量,而(ac)b|a|c
9、|cosa,cb是一个与b共线的向量,两者一般不同.3.a在b方向上的射影与b在a方向上的射影是不同的,应结合图形加以区分.1.对于向量a,b,c和实数,下列命题中正确的是()A.若ab0,则a0或b0B.若a0,则a0或0C.若a2b2,则ab或abD.若abac,则bc【解析】由向量数量积的运算性质知A、C、D错误.【答案】B2.(2013安徽高考)若非零向量a,b满足|a|3|b|a2b|,则a与b夹角的余弦值为_.【解析】由|a|a2b|,两边平方,得|a|2(a2b)2|a|24|b|24ab,所以ab|b|2.又|a|3|b|,所以cosa,b.【答案】3.已知|a|4,|b|6,
10、a与b的夹角为60,则向量a在向量b方向上的射影是_.【解析】向量a在向量b方向上的射影是|a|cos 6042.【答案】24.已知|a|4,|b|5,当(1)ab;(2)ab;(3)a与b的夹角为30时,分别求a与b的数量积.【解】(1)当ab时,若a与b同向,则0,ab|a|b|cos 04520;若a与b反向,则180,ab|a|b|cos 18045(1)20.(2)当ab时,.ab|a|b|cos4500.(3)当a与b的夹角为30时,ab|a|b|cos 304510.一、选择题1.|a|1,|b|2,cab且ca,则a与b的夹角为()A.30B.60C.120 D.150【解析】
11、ca,设a与b的夹角为,则(ab)a0,所以a2ab0,所以a2|a|b|cos 0,则12cos 0,所以cos ,所以120.故选C. 【答案】C2.若向量a与b的夹角为60,|b|4,且(a2b)(a3b)72,则a的模为()A.2B.4 C.6D.12【解析】(a2b)(a3b)a2ab6b2|a|2|a|b|cos 606|b|2|a|22|a|9672,|a|22|a|240,|a|6.【答案】C3.ABC中,0,则ABC是()A.锐角三角形 B.直角三角形C.钝角三角形 D.等边三角形【解析】|cos A0,cos A0.A是钝角.ABC是钝角三角形.【答案】C4.(2014怀远
12、高一检测)已知i与j为互相垂直的单位向量,ai2j,bij且a与b的夹角为锐角,则实数的取值范围是()A.(,2)B.C.D.【解析】ab(i2j)(ij)120,又a、b同向共线时,ab0,设此时akb(k0),则i2jk(ij),2,a、b夹角为锐角时,的取值范围是(,2),故选A.【答案】A5.(2014皖南八校高一检测)在OAB中,已知OA4,OB2,点P是AB的垂直平分线l上的任一点,则()A.6B.6 C.12D.12【解析】设AB的中点为M,则()()(O)(22)6.故选B.【答案】B二、填空题6.(2014北大附中高一检测)向量a与b的夹角为120,|a|1,|b|3,则|5
13、ab|_.【解析】因为ab|a|b|cos 120,所以|5ab|225a210abb22510949,所以|5ab|7.【答案】77.已知ab,|a|2,|b|3,且3a2b与ab垂直,则等于_.【解析】(3a2b)(ab)(ab)(3a2b)0,3a2(23)ab2b20.又|a|2,|b|3,ab,12(23)23cos 90180,12180,.【答案】8.(2014温州高一检测)已知a是平面内的单位向量,若向量b满足b(ab)0,则|b|的取值范围是_.【解析】设a,b的夹角为,由b(ab)0,得|b|a|cos |b|20.解得|b|0或|b|a|cos cos 1,所以|b|的取
14、值范围是0,1.【答案】0,1三、解答题9.已知向量a、b的长度|a|4,|b|2.(1)若a、b的夹角为120,求|3a4b|;(2)若|ab|2,求a与b的夹角.【解】(1)ab|a|b|cos 120424.又|3a4b|2(3a4b)29a224ab16b294224(4)1622304,|3a4b|4.(2)|ab|2(ab)2a22abb2422ab22(2)2,ab4,cos .又 0,.10.已知ab,且|a|2,|b|1,若有两个不同时为零的实数k,t,使得a(t3)b与katb垂直,试求k的最小值.【解】ab,ab0,又由已知得a(t3)b(katb)0,ka2t(t3)b
15、20.|a|2,|b|1,4kt(t3)0.k(t23t)(t)2(t0).故当t时,k取最小值.11.(2014淄博高一检测)设向量a,b满足|a|b|1,且|3a2b|.(1)求a与b夹角的大小;(2)求ab与b夹角的大小;(3)求的值.【解】(1)设a与b的夹角为,(3a2b)29|a|24|b|212ab7,又|a|b|1,ab,|a|b|cos ,即cos .又0,a与b的夹角为.(2)设ab与b的夹角为,(ab)bb2ab1,|ab|,|b|1,cos ,又0,ab与b的夹角为.(3)(3ab)29|a|26ab|b|293113,(3ab)29|a|26ab|b|29317,.(
16、教师用书独具)已知向量a、b不共线,且|2ab|a2b|,求证:(ab)(ab).【思路探究】证明ab与ab垂直,转化为证明ab与ab的数量积为零.【自主解答】|2ab|a2b|,(2ab)2(a2b)2,4a24abb2a24ab4b2,a2b2,(ab)(ab)a2b20.又a与b不共线,ab0,ab0,(ab)(ab).1.解本题的关键是找出a与b的关系,由已知条件建立方程组不难找出a与b的关系.2.非零向量ab0ab是非常重要的性质,它对于解决平面几何图形中的有关垂直问题十分有效,应熟练掌握.已知|a|3,|b|2,向量a,b的夹角为60,c3a5b,dma3b,求当m为何值时,c与d垂直?【解】由已知得ab32cos 603.由cd,得cd0,cd(3a5b)(ma3b)3ma2(5m9)ab15b227m3(5m9)6042m87.42m870,m,即m时,c与d垂直.13 / 13