资源描述
遵义市2018年九年级联合模拟检测(二) 数 学 (考试时间:120分钟 满分:150分) 考生注意: 1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。 2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦擦干净后,再选涂其他答案标号。 3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卡规定的位置上。 4.所有题目必须在答题卡上作答,在试题卷上答题无效。 5.考试结束后,将试题卷和答题卡一并交回。 一、选择题(本题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满) 1.-5-3的结果是( ) A.-2 B.8 C.-8 D.2 2.如图,下面几何体的俯视图是( ) 3.总投资530亿元的渝贵高铁预计2018年1月竣工通车,届时从遵义到重庆只需1.5小时左右,遵义,重庆两地的游客将更加方便,更加快捷。用科学记数法表示530亿元为( ) A. 530x108 B. 5.3x109 C. 5.3x1010 D. 5.3x1011 4.我市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48。,若CF与EF的长度相等,则LC的度数为( ) A.480 B.400 C.300 D.240 5.下列运算正确的是( ) A.2m2一m=m B.(a-2)2=a2-4 C.(a2)3=a5 D. 2=4 6.下列方程中,没有实数根的是( ) A.x2-2x=0 B.x2-2x-l=0 C.x2-2x+l=0 D.x2-2x+2=0 7.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( ) A.16,10.5 B.8,9 C.16,8.5 D.8,8.5 8.不等式3x-l>x+l的解集在数轴上表示为( ) A B C D 9.如图,在平行四边形4 BCD中,EF∥AB交AD于E,交BD于F,DE:EA =3:4,EF=3,则CD的长为( ) A.7 B.4 C.3 D.12 10.五一期间,几名同学共同包租一辆中巴车去科技馆游玩,中巴车的租价为480元,出发时又有4名学生参加进来,结果每位同学比原来少分摊4元车费。设原来游玩的同学有x名,则可得方程( ) 11.如图,二次函数y=ax2+bx+c的图象与x轴交于4、B两点,与y轴交于点C,且OB=OC,下列结论:①b>l且6≠2;②b2-4ac<4a2;③a>争;其中正确的个数为( ) A.0 B.1 C.2 D.3 12.如图,在Rt△ABC中,LA CB=90。,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,LBA C=30。,则线段PM的最大值是( ) A.3 B.2 C.4 D.1 二、填空题(本题共有6小题,每小题4分,共24分。答题请用0.5毫米黑色签字笔直接答在答题卡的相应位置上) 13.计算: × = 14.因式分解:xy3-xy= 15.明代大数学家程大位著的《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问郡多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个和笔套5个,怎样安排笔管或笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,则可列方程为: 16.如图,AA BC中,AB=7cm,A C=8cm.BC=6cm,点D是△ABC的内一心,过点O作EF∥AB,与AC、BC分别交于点E、F,则△CEF的周长为 。 17.观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有 个点。 18.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限,将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y= (x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE= ,则BN的长为 。 三、解答题(本题共9小题,共90分。答题请用0.5毫米黑色签字笔书写在答题卡的相应位置上,解题时应写出必要的文字说明,证明过程或演算步骤) 19.(6分)计算: 20.(8分)先化简,再求值:
21.(8分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2 米处的点C出发,沿斜面坡度i=1: 2 的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为370,量得仪器的高DE为1.5米.已知4、B、C、D、E在同一平面内,ABIBC,AB∥DE.求旗杆AB的高度。 (参考数据:sin370≈ ,cos370≈ ,tan370≈ .计算结果保留根号)
22.(10分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸出一张纸牌然后放回,再随机摸出一张纸牌, (1)计算两次摸出纸牌上数字之和为5的概率;
(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.
23.(10分)据报道:2017年底我国微信用户规模已到达6亿.以下是根据相关数据制作的统计图表的一部分: 请根据以上信息,回答以下问题: (1)从2016年到2017年微信的人均使用时长增加了 分钟。 (2)补全2017年微信用户对“微信公众平台”参与关注度扇形统计图,在我国6亿微信用户中,经常使用户约为 亿(结果精确到0.1); (3)从调查数据看,预计我国微信用户今后每年将以20%的增长率递增,请你估计两年后,我国微信用户的规模将到达 亿。 24.(10分)求证:对角线互相垂直的平行四边形是菱形。 小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程。 已知:如图,在平行四边形ABCD中,对角线AC,BD交于点D,求证:
25.(12分)我市教育局对某镇实施“教育精准扶贫”,为某镇建中、小型两种图书室共30个,计划养殖类图书不超过2000本,种植类图书不超过1600本,已知组建一个中型图书室需养殖类图书80本,种植类图书50本;组建一个小型图书室需养殖类图书30本,种植类图书60本。 (1)符合题意的组建方案有几种?请写出具体的组建方案; (2)若组建一个中型图书室的费用是2000元,组建一个小型图书室的费用是1500元,哪种方案费用最低,最低费用是多少元?
26.(12分)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分二BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,OF与y轴相交于另一点G. (1)求证:BC是⊙F的切线; (2)若点A、D的坐标分别为4(0,-1),D(2,0),求⊙F的半径; (3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论。
27.(14分)如图,在平面直角坐标系中,直线y= x+2与x轴交于点A,与y轴交于点C,抛物线y= x2+bx+c经过A、c两点,与戈轴的另一交点为点B. (1)求抛物线的函数表达式; (2)点D为直线AC上方抛物线上一动点, ①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求 的最大值; ②过点D作DFIAC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于LBAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.
20 × 20
展开阅读全文