收藏 分销(赏)

常微分方程习题及解答.doc

上传人:a199****6536 文档编号:2558251 上传时间:2024-05-31 格式:DOC 页数:6 大小:397.01KB
下载 相关 举报
常微分方程习题及解答.doc_第1页
第1页 / 共6页
常微分方程习题及解答.doc_第2页
第2页 / 共6页
常微分方程习题及解答.doc_第3页
第3页 / 共6页
常微分方程习题及解答.doc_第4页
第4页 / 共6页
常微分方程习题及解答.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、常微分方程习题及解答一、问答题:1 常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?答:微分方程就是联系着自变量,未知函数及其导数的关系式。常微分方程,自变量的个数只有一个。偏微分方程,自变量的个数为两个或两个以上。常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。2 举例阐述常数变易法的基本思想。答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。例:求的通解。首先利用变量分离法可求得其对应的线性齐次方程的通解为,然后将常数变易为的待

2、定函数,令,微分之,得到 ,将上述两式代入方程中,得到即 积分后得到进而得到方程的通解3高阶线性微分方程和线性方程组之间的联系如何?答:阶线性微分方程的初值问题其中是区间上的已知连续函数,是已知常数。它可以化为线性微分方程组的初值问题但是需要指出的是每一个阶线性微分方程可化为个一阶线性微分方程构成的方程组,反之却不成立。4若常系数线性方程组和有相同的基本解矩阵, 则与有什么关系?答:设常系数方程组的基解为,的基解为,由于两个常系数线性方程组有相同的基解矩阵,根据的解的性质知,则可得,为非奇异的常数矩阵。5写出线性微分方程组的皮卡逐次逼近序列。二、求下列方程(或方程组)的通解(或特解):1.解:

3、方程可化为,当时,是伯努利方程。其中。令,方程可化为,则将代入上面的式子,可得或者也是方程的解。2解:令,则原方程可化为对求导,可得,则那么:或者当时,则当时,则,那么,可得,其中是任意常数。3.解:方法一:方程两端同时乘以,转化为欧拉方程。它的特征方程,特征根为0,0,1.方程的基本解组为故其通解为方法二:令,将方程转化为一阶线性方程,解之得。即有,积分得,再积分得其通解为4. 解:原方程可写成,方程的左边可写成则 积分可得, 那么 因为,所以,则 利用常数变易法可求得方程的解为: 5. 解:特征方程为可得特征值为。对应于特征值的特征向量为,对应于特征值的特征向量为,对应于特征值的特征向量为。令,可得方程组的基解为。三、证明题1给定方程,其中在上连续,设是上述方程的任一两个解,证明极限存在。证明:齐次方程的特征方程为解之得,。所以齐次方程的通解为因为是非齐次方程的两个解,有解的性质可得,是对应齐次方程的解,也就是说存在适当的常数使得=从而2证明:已知二阶非齐次方程对应齐次方程的一个非零解,则该方程可以求得通解。证明:对于二阶线性方程,经过变换,得到再作变换,即这是一个以为未知函数的一阶线性非齐次方程,容易求出它的通解为再积分 则该方程的解可表示为 那么齐次方程的解为:然后利用常数变易法可以求得非齐次方程的一个特解那么所求方程的通解为 即证该方程可以求得通解。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服