收藏 分销(赏)

常微分方程基本概念习题及解答.doc

上传人:天**** 文档编号:2389867 上传时间:2024-05-29 格式:DOC 页数:5 大小:138.06KB 下载积分:6 金币
下载 相关 举报
常微分方程基本概念习题及解答.doc_第1页
第1页 / 共5页
常微分方程基本概念习题及解答.doc_第2页
第2页 / 共5页


点击查看更多>>
资源描述
§1.2 常微分方程基本概念习题及解答 1.=2xy,并满足初始条件:x=0,y=1的特解。 解:=2xdx 两边积分有:ln|y|=x+c y=e+e=cex另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex,x=0 y=1时 c=1 特解为y= e. 2. ydx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:ydx=-(x+1)dy dy=-dx 两边积分: -=-ln|x+1|+ln|c| y= 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y= 3.= 解:原方程为:= dy=dx 两边积分:x(1+x)(1+y)=cx 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: dy=-dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。 5.(y+x)dy+(x-y)dx=0 解:原方程为: =- 令=u 则=u+x 代入有: -du=dx ln(u+1)x=c-2arctgu 即 ln(y+x)=c-2arctg. 6. x-y+=0 解:原方程为: =+- 则令=u =u+ x du=sgnx dx arcsin=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:= 两边积分:ln|siny|=-ln|cosx|-ln|c| siny== 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 +=0 解:原方程为:=e 2 e-3e=c. 9.x(lnx-lny)dy-ydx=0 解:原方程为:=ln 令=u ,则=u+ x u+ x=ulnu ln(lnu-1)=-ln|cx| 1+ln=cy. 10. =e 解:原方程为:=ee e=ce 11 =(x+y) 解:令x+y=u,则=-1 -1=u du=dx arctgu=x+c arctg(x+y)=x+c 12. = 解:令x+y=u,则=-1 -1= u-arctgu=x+c y-arctg(x+y)=c. 13. = 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y-y)-dx+x=c xy-y+y-x-x=c 14: = 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(y+2y)-d(x+5x)=0 y+4y+x+10x-2xy=c. 15: =(x+1) +(4y+1) +8xy 解:原方程为:=(x+4y)+3 令x+4y=u 则=- -=u+3 =4 u+13 u=tg(6x+c)-1 tg(6x+c)=(x+4y+1). 16:证明方程=f(xy),经变换xy=u可化为变量分离方程,并由此求下列方程: 1) y(1+xy)dx=xdy 2) = 证明: 令xy=u,则x+y= 则=-,有: =f(u)+1 du=dx 所以原方程可化为变量分离方程。 1) 令xy=u 则=- (1) 原方程可化为:=[1+(xy)] (2) 将1代入2式有:-=(1+u) u=+cx 17.求一曲线,使它的切线坐标轴间的部分初切点分成相等的部分。 解:设(x +y )为所求曲线上任意一点,则切线方程为:y=y’(x- x )+ y 则与x轴,y轴交点分别为: x= x - y= y - x y’ 则 x=2 x = x - 所以 xy=c 18.求曲线上任意一点切线与该点的向径夹角为0的曲线方程,其中 = 。 解:由题意得:y’= dy= dx ln|y|=ln|xc| y=cx. = 则y=tgx 所以 c=1 y=x. 19.证明曲线上的切线的斜率与切点的横坐标成正比的曲线是抛物线。 证明:设(x,y)为所求曲线上的任意一点,则y’=kx 则:y=kx +c 即为所求。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服