收藏 分销(赏)

常微分方程基本概念习题及解答.doc

上传人:天**** 文档编号:2389867 上传时间:2024-05-29 格式:DOC 页数:5 大小:138.06KB
下载 相关 举报
常微分方程基本概念习题及解答.doc_第1页
第1页 / 共5页
常微分方程基本概念习题及解答.doc_第2页
第2页 / 共5页
常微分方程基本概念习题及解答.doc_第3页
第3页 / 共5页
常微分方程基本概念习题及解答.doc_第4页
第4页 / 共5页
常微分方程基本概念习题及解答.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1.2 常微分方程基本概念习题及解答1=2xy,并满足初始条件:x=0,y=1的特解。解:=2xdx 两边积分有:ln|y|=x+cy=e+e=cex另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex,x=0 y=1时 c=1特解为y= e.2. ydx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:ydx=-(x+1)dy dy=-dx两边积分: -=-ln|x+1|+ln|c| y=另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e特解:y=3= 解:原方程为:=dy=dx 两边积分:x(1+x)(1+y)=cx4. (1+x)ydx+(1-

2、y)xdy=0 解:原方程为: dy=-dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。5(y+x)dy+(x-y)dx=0 解:原方程为: =-令=u 则=u+x 代入有:-du=dxln(u+1)x=c-2arctgu即 ln(y+x)=c-2arctg.6. x-y+=0 解:原方程为: =+-则令=u =u+ x du=sgnx dxarcsin=sgnx ln|x|+c7. tgydx-ctgxdy=0 解:原方程为:=两边积分:ln|siny|=-ln|cosx|-ln|c|siny= 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sin

3、ycosx=c.8 +=0 解:原方程为:=e2 e-3e=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:=ln令=u ,则=u+ xu+ x=ulnuln(lnu-1)=-ln|cx|1+ln=cy.10. =e 解:原方程为:=eee=ce11 =(x+y) 解:令x+y=u,则=-1-1=udu=dxarctgu=x+carctg(x+y)=x+c12. =解:令x+y=u,则=-1 -1= u-arctgu=x+c y-arctg(x+y)=c.13. =解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 d

4、xy-d(y-y)-dx+x=c xy-y+y-x-x=c14: =解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(y+2y)-d(x+5x)=0 y+4y+x+10x-2xy=c.15: =(x+1) +(4y+1) +8xy 解:原方程为:=(x+4y)+3令x+4y=u 则=-=u+3=4 u+13u=tg(6x+c)-1tg(6x+c)=(x+4y+1).16:证明方程=f(xy),经变换xy=u可化为变量分离方程,并由此求下列方程:1) y(1+xy)dx=xdy2) = 证明: 令xy=u,则x+y= 则=-,有

5、: =f(u)+1 du=dx 所以原方程可化为变量分离方程。1) 令xy=u 则=- (1)原方程可化为:=1+(xy) (2)将1代入2式有:-=(1+u)u=+cx17.求一曲线,使它的切线坐标轴间的部分初切点分成相等的部分。解:设(x +y )为所求曲线上任意一点,则切线方程为:y=y(x- x )+ y 则与x轴,y轴交点分别为: x= x - y= y - x y 则 x=2 x = x - 所以 xy=c18.求曲线上任意一点切线与该点的向径夹角为0的曲线方程,其中 = 。解:由题意得:y= dy= dx ln|y|=ln|xc| y=cx. = 则y=tgx 所以 c=1 y=x.19.证明曲线上的切线的斜率与切点的横坐标成正比的曲线是抛物线。 证明:设(x,y)为所求曲线上的任意一点,则y=kx 则:y=kx +c 即为所求。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服