ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:397.01KB ,
资源ID:2558251      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2558251.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(常微分方程习题及解答.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

常微分方程习题及解答.doc

1、常微分方程习题及解答一、问答题:1 常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?答:微分方程就是联系着自变量,未知函数及其导数的关系式。常微分方程,自变量的个数只有一个。偏微分方程,自变量的个数为两个或两个以上。常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。2 举例阐述常数变易法的基本思想。答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。例:求的通解。首先利用变量分离法可求得其对应的线性齐次方程的通解为,然后将常数变易为的待

2、定函数,令,微分之,得到 ,将上述两式代入方程中,得到即 积分后得到进而得到方程的通解3高阶线性微分方程和线性方程组之间的联系如何?答:阶线性微分方程的初值问题其中是区间上的已知连续函数,是已知常数。它可以化为线性微分方程组的初值问题但是需要指出的是每一个阶线性微分方程可化为个一阶线性微分方程构成的方程组,反之却不成立。4若常系数线性方程组和有相同的基本解矩阵, 则与有什么关系?答:设常系数方程组的基解为,的基解为,由于两个常系数线性方程组有相同的基解矩阵,根据的解的性质知,则可得,为非奇异的常数矩阵。5写出线性微分方程组的皮卡逐次逼近序列。二、求下列方程(或方程组)的通解(或特解):1.解:

3、方程可化为,当时,是伯努利方程。其中。令,方程可化为,则将代入上面的式子,可得或者也是方程的解。2解:令,则原方程可化为对求导,可得,则那么:或者当时,则当时,则,那么,可得,其中是任意常数。3.解:方法一:方程两端同时乘以,转化为欧拉方程。它的特征方程,特征根为0,0,1.方程的基本解组为故其通解为方法二:令,将方程转化为一阶线性方程,解之得。即有,积分得,再积分得其通解为4. 解:原方程可写成,方程的左边可写成则 积分可得, 那么 因为,所以,则 利用常数变易法可求得方程的解为: 5. 解:特征方程为可得特征值为。对应于特征值的特征向量为,对应于特征值的特征向量为,对应于特征值的特征向量为。令,可得方程组的基解为。三、证明题1给定方程,其中在上连续,设是上述方程的任一两个解,证明极限存在。证明:齐次方程的特征方程为解之得,。所以齐次方程的通解为因为是非齐次方程的两个解,有解的性质可得,是对应齐次方程的解,也就是说存在适当的常数使得=从而2证明:已知二阶非齐次方程对应齐次方程的一个非零解,则该方程可以求得通解。证明:对于二阶线性方程,经过变换,得到再作变换,即这是一个以为未知函数的一阶线性非齐次方程,容易求出它的通解为再积分 则该方程的解可表示为 那么齐次方程的解为:然后利用常数变易法可以求得非齐次方程的一个特解那么所求方程的通解为 即证该方程可以求得通解。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服