1、2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1抛物线y=ax2+bx+c的对称轴为直线x=1,部分图象如图所示,下列判断中:abc1;b24ac1;9a3b+c=1;若点(1.5,y1),(2,y2)均在抛物线上,则y1y2;5a2b+c1其中正确的个数有()A2B3C4D52若关于的方程
2、有实数根,则的取值范围是( )ABCD3如图,点,分别在反比例函数,的图象上若,则的值为( )ABCD4如果,那么下列比例式中正确的是( )ABCD5如图,在中,两个顶点在轴的上方,点的坐标是以点为位似中心,在轴的下方作的位似图形,使得的边长是的边长的2倍设点的坐标是,则点的坐标是( )ABCD6下列图形中,既是轴对称图形,又是中心对称图形的是( )A正三角形B正五边形C正六边形D正七边形7甲、乙、丙、丁四人各进行了次射击测试,他们的平均成绩相同,方差分别是则射击成绩最稳定的是( )A甲B乙C丙D丁8如图,河堤横断面迎水坡的坡比是,堤高,则坡面的长度是( )ABCD9如图,线段AB两个端点的坐
3、标分别是A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A(3,2)B(4,1)C(3,1)D(4,2)10如图所示,已知为的直径,直线为圆的一条切线,在圆周上有一点,且使得,连接,则的大小为( ) ABCD二、填空题(每小题3分,共24分)11若反比例函数y的图象经过点A(m,3),则m的值是_12如图,AB是半圆O的直径,D是半圆O上一点,C是的中点,连结AC交BD于点E,连结AD,若BE4DE,CE6,则AB的长为_13一元二次方程(x1)21的解是_14如图,是的直径,弦则阴影部分图形的面积为_15二次函数,当时,y
4、随x的增大而减小,则m的取值范围是_16如图,把一个直角三角尺ACB绕着30角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则BDC的度数为_度17抛物线y(x3)22的顶点坐标是_18关于的一元二次方程有实数根,则实数的取值范围是_三、解答题(共66分)19(10分)先化简,后求值:,其中x120(6分)某中学准备举办一次演讲比赛,每班限定两人报名,初三(1)班的三位同学(两位女生,一位男生)都想报名参加,班主任李老师设计了一个摸球游戏,利用已学过的概率知识来决定谁去参加比赛,游戏规则如下:在一个不透明的箱子里放3个大小质地完全相同的乒乓球,在这3个乒乓球上分别写上、(每个
5、字母分别代表一位同学,其中、分别代表两位女生,代表男生),搅匀后,李老师从箱子里随机摸出一个乒乓球,不放回,再次搅匀后随机摸出第二个乒乓球,根据乒乓球上的字母决定谁去参加比赛。(1)求李老师第一次摸出的乒乓球代表男生的概率;(2)请用列表或画树状图的方法求恰好选定一名男生和一名女生参赛的概率21(6分)如图,斜坡的坡度是1:2.2(坡面的铅直高度与水平宽度的比称为坡度),这个斜坡的水平宽度是22米,在坡顶处的同一水平面上()有一座古塔在坡底处看塔顶的仰角是45,在坡顶处看塔顶的仰角是60,求塔高的长(结果保留根号)22(8分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的
6、销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的80%,则一月份B款运动鞋销售了多少双?(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价销售量)(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议 23(8分)中华人民共和国城市道路路内停车泊位设置规范规定:米以上的,可在两侧设停车泊位,路幅宽米到米的,可在单侧设停车泊位,路幅宽米以下的,不能设停车泊位;米,车位宽米;米.根据上述的规定,在不考虑车位间隔线和车道间隔线的宽度的情况下,如果在一条路幅宽为米的双向通行车道设置同一种排列方式的小型停车泊位,请回答下列问题:(1
7、)可在该道路两侧设置停车泊位的排列方式为 ;(2)如果这段道路长米,那么在道路两侧最多可以设置停车泊位 个.(参考数据:,)24(8分)如图,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把ADE沿AE折叠,当点D的对应点D落在ABC的角平分线上时,DE的长为_25(10分)如图,AB是O的直径,D是弦AC的延长线上一点,且CDAC,DB的延长线交O于点E(1)求证:CDCE;(2)连结AE,若D25,求BAE的度数26(10分)在一个不透明的袋子里,装有3个分别标有数字1,1,2的乒乓球,他们的形状、大小、质地等完全相同,随机取出1个乒乓球(1)写出取一次取到负数的概率;(2)小
8、明随机取出1个乒乓球,记下数字后放回袋子里,摇匀后再随机取出1个乒兵球,记下数字用画树状图或列表的方法求“第一次得到的数与第二次得到的数的积为正数”发生的概率参考答案一、选择题(每小题3分,共30分)1、B【分析】分析:根据二次函数的性质一一判断即可【详解】详解:抛物线对称轴x=-1,经过(1,1),-=-1,a+b+c=1,b=2a,c=-3a,a1,b1,c1,abc1,故错误,抛物线对称轴x=-1,经过(1,1),可知抛物线与x轴还有另外一个交点(-3,1)抛物线与x轴有两个交点,b2-4ac1,故正确,抛物线与x轴交于(-3,1),9a-3b+c=1,故正确,点(-1.5,y1),(-
9、2,y2)均在抛物线上, (-1.5,y1)关于对称轴的对称点为(-1.5,y1)(-1.5,y1),(-2,y2)均在抛物线上,且在对称轴左侧,-1.5-2,则y1y2;故错误,5a-2b+c=5a-4a-3a=-2a1,故正确,故选B【点睛】本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型2、D【分析】用直接开平方法解方程,然后根据平方根的意义求得m的取值范围.【详解】解:关于的方程有实数根故选:D【点睛】本题考查直接开平方法解方程,注意负数没有平方根是本题的解题关键.3、A【分析】分别过点A作ACx轴于C,过点B作BDx轴于
10、D,根据点A所在的图象可设点A的坐标为(),根据相似三角形的判定证出BDOOCA,列出比例式即可求出点B的坐标,然后代入中即可求出的值【详解】解:分别过点A作ACx轴于C,过点B作BDx轴于D,点在反比例函数,设点A的坐标为(),则OC=x,AC=,BDO=OCA=90BODAOC=180AOB=90,OACAOC=90BOD=OACBDOOCA解得:OD=2AC=,BD=2OC=2x,点B在第二象限点B的坐标为()将点B坐标代入中,解得故选A【点睛】此题考查的是求反比例函数解析式相似三角形的判定及性质,掌握用待定系数法求反比例函数的解析式和构造相似三角形的方法是解决此题的关键4、C【分析】根
11、据比例的性质,若,则判断即可.【详解】解: 故选:C.【点睛】本题主要考查了比例的性质,灵活的利用比例的性质进行比例变形是解题的关键.5、A【分析】作BDx轴于D,BEx轴于E,根据相似三角形的性质求出CE,BE的长,得到点B的坐标【详解】作BDx轴于D,BEx轴于E,点的坐标是,点的坐标是,CD=2,BD=,由题意得:C,相似比为1:2,CE=4,BE=1,点B的坐标为(3,-1),故选:A【点睛】本题考查了位似变换、坐标与图形性质,熟练掌握位似变换的性质是解答的关键6、C【分析】根据轴对称图形与中心对称图形的概念求解即可【详解】A、此图形不是中心对称图形,是轴对称图形,故此选项错误; B、
12、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形既是中心对称图形,又是轴对称图形,故此选项正确;D、此图形不是中心对称图形,是轴对称图形,故此选项错误故选:C【点睛】本题主要考查了轴对称图形与中心对称图形,掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合7、C【分析】根据方差的意义,即可得到答案【详解】丙的方差最小,射击成绩最稳定的是丙,故选C【点睛】本题主要考查方差的意义,掌握方差越小,一组数据越稳定,是解题的关键8、D【分析】直接利用坡比的定义得出AC的长,进而利用勾股定理得出答
13、案【详解】河堤横断面迎水坡AB的坡比是,解得:AC,故AB8(m),故选:D【点睛】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键9、A【解析】试题分析:线段AB的两个端点坐标分别为A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,端点C的横坐标和纵坐标都变为A点的一半,端点C的坐标为:(3,2)故选A考点:1位似变换;2坐标与图形性质10、C【分析】连接OB,由题意可知,COB是等边三角形,即可求得C,再由三角形内角和求得BAC,最后根据切线的性质和余角的定义解答即可.【详解】解:如图:连接OB为的直径ACB=90又AO=OCO
14、B=AC=OCOC=OB=BCCOB是等边三角形C=60BAC=90-C=30又直线为圆的一条切线CAP=90=CAP-BAC=60故答案为C.【点睛】本题主要考查了圆的性质、等边三角形以及切线的性质等知识点,根据题意说明COB是等边三角形是解答本题的关键.二、填空题(每小题3分,共24分)11、2【解析】反比例函数的图象过点A(m,3),解得.12、4【分析】如图,连接OC交BD于K设DEkBE4k,则DKBK2.5k,EK1.5k,由ADCK,推出AE:ECDE:EK,可得AE4,由ECKEBC,推出EC2EKEB,求出k即可解决问题【详解】解:如图,连接OC交BD于K,OCBD,BE4D
15、E,可以假设DEkBE4k,则DKBK2.5k,EK1.5k,AB是直径,ADKDKCACB90,ADCK,AE:ECDE:EK,AE:6k:1.5k,AE4,ECKEBC,EC2EKEB,361.5k4k,k0,k,BC2,AB4故答案为:4【点睛】本题考查相似三角形的判定和性质,垂径定理,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型13、x2或0【分析】根据一元二次方程的解法即可求出答案【详解】解:(x1)21,x11,x2或0故答案为:x2或0【点睛】本题主要考查解一元二次方程的方法,形如x2=p或(nx+m)2=p(p0)的一元二次方程可采
16、用直接开平方的方法解一元二次方程14、【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知COE=60然后通过解直角三角形求得线段OC,求出扇形COB面积,即可得出答案【详解】解:AB是O的直径,弦CDAB,CD=2,CE=CD=,CEO=90,CDB=30,COB=2CDB=60,OC=2,阴影部分的面积S=S扇形COB=,故答案为:【点睛】本题考查了垂径定理、解直角三角形,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键15、【分析】先根据二次函数的解析式判断出函数的开口方向,再由当时,函数值y随x的增大而减小可知二次函数的对称轴,故可得出关于m
17、的不等式,求出m的取值范围即可【详解】解:二次函数,a=10时,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当0时,一元二次方程没有实数根.三、解答题(共66分)19、x2,-2【分析】由题意先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得【详解】解:x2,当x1时,原式122【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则20、(1)李老师第一次摸出的乒乓球代表男生的概率为;(2)恰好选定一名男生和t名女生参赛的概率为.【分析】(1)共3个球,第一次摸出的乒乓球代表男生的有1种,即可利用概率公式求得结果;(2)
18、列树状图即可解答.【详解】(1)共有3个球,第一次摸出的乒乓球代表男生的有1种情况,第一次摸出的乒乓球代表男生的概率为;(2)树状图如下:共有6种等可能的情况,其中恰好选定一名男生和一名女生参赛的有4种,P(恰好选定一名男生和一名女生参赛)=.【点睛】此题考查事件概率的求法,简单事件的概率可直接利用公式计算,复杂事件的概率可利用列树状图解答,解题中注意事件是属于“放回”或是“不放回”事件.21、米【分析】分别过点和作的垂线,垂足为和,设AD=x,根据坡度求出DQ,根据正切定义用x表示出PQ,再由等腰直角三角形的性质列出x的方程,解之即可解答【详解】解:分别过点和作的垂线,垂足为和,设的长是米中
19、,的坡比是1:11,水平长度11米在中,即:答:的长是米【点睛】本题考查解直角三角形的应用-仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度坡角的概念、熟记锐角三角函数的定义是解答本题的关键22、(1)40;(2)39000;(3)答案不唯一,详见解析【分析】(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出算式,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可【详解】解:(1),一月份款运动鞋销售了40双(2)设两款运动鞋的销售单价分别为元,则根据题意,得,解得三月份
20、的总销售额为(元)(3)答案不唯一,如:从销售量来看,款运动鞋销售量逐月上升,比款运动鞋销售量大,建议多进款运动鞋,少进或不进款运动鞋从总销售额来看,由于款运动鞋销售量逐月减少,导致总销售额减少,建议采取一些促销手段,增加款运动鞋的销售量(写出一条即可)【点睛】本题考查的是条形统计图和折线统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据23、(1)平行式或倾斜式(2)1【分析】(1)对应三种方式分别验证是否合适即可;(2)分别按照第(1)问选出来的排列方式计算停车泊位,进行比较取较大者即可.【详解】(1)除去两车道之后道路宽 因为
21、要在道路两旁设置停车泊位,所以每个停车泊位的宽必须小于等于3m,所以方式3垂直式不合适,排除;方式1平行式满足要求,对于房市,它的宽度为,要满足要求,必须有,即,所以当时,方式2倾斜式也能满足要求.故答案为平行式或倾斜式(2)若选择平行式,则可设置停车泊位的数量为(个)若选择倾斜式,每个停车泊位的宽度为 ,要使停车泊位尽可能多,就要使宽度尽可能小,所以取,此时每个停车位的宽度为 ,所以可设置停车泊位的数量为(个)故答案为1【点睛】本题主要考查理解能力以及锐角三角函数的应用,掌握锐角三角函数的定义是解题的关键.24、或【分析】连接BD,过D作MNAB,交AB于点M,CD于点N,作DPBC交BC于
22、点P,先利用勾股定理求出MD,再分两种情况利用勾股定理求出DE【详解】解:如图,连接BD,过D作MNAB,交AB于点M,CD于点N,作DPBC交BC于点P点D的对应点D落在ABC的角平分线上,MD=PD,设MD=x,则PD=BM=x,AM=AB-BM=7-x,又折叠图形可得AD=AD=5,x2+(7-x)2=25,解得x=3或1,即MD=3或1在RtEND中,设ED=a,当MD=3时,AM=7-3=1,DN=5-3=2,EN=1-a,a2=22+(1-a)2,解得a=,即DE=,当MD=1时,AM=7-1=3,DN=5-1=1,EN=3-a,a2=12+(3-a)2,解得a=,即DE=故答案为
23、:或【点睛】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的25、(1)证明见解析;(2)40.【分析】(1) 连接BC,利用直径所对的圆周角是直角、线段垂直平分线性质、同弧所对的圆周角相等、等角对等边即可证明.(2)利用三角形外角等于不相邻的两个内角和、利用直径所对的圆周角是直角、直角三角形两锐角互余即可解答.【详解】(1)证明:连接BC,AB是O的直径,ABC90,即BCAD,CDAC,ABBD,AD,CEBA,CEBD,CECD(2)解:连接AEA BEA+D50,AB是O的直径,AEB90,BAE905040【点睛】本题考查圆周角定理,等腰三角形的判定和性质等
24、知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型26、(1);(2)【分析】(1)由概率公式即可得出结果;(2)由树状图得出第一次得到的数与第二次得到的数的积为正数的情况,再利用概率公式求解即可求得答案【详解】解:(1)取一次取到负数的概率为;(2)画树状图如下:共有9种等可能的结果,“第一次得到的数与第二次得到的数的积为正数”的有5种情况,“第一次得到的数与第二次得到的数的积为正数”的概率为【点睛】此题考查的是用列表法或树状图法求概率注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率所求情况数与总情况数之比