1、部编版八年级数学下册期中试卷(审定版)班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1已知(x2015)2(x2017)234,则(x2016)2的值是( )A4B8C12D162下列各数中,无理数的个数有()A1个B2个C3个D4个3若2amb4与5an+2b2m+n可以合并成一项,则m-n的值是( )A2B0C-1D14ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )ABE=DFBAE=CFCAF/CEDBAE=DCF5方程组的解为( )ABCD6菱形不具备的性质是()A四条边都相等B对角线一定相等C是轴对称图形D
2、是中心对称图形7已知正多边形的一个外角为36,则该正多边形的边数为( ).A12B10C8D68如图,在RtPQR中,PRQ90,RPRQ,边QR在数轴上点Q表示的数为1,点R表示的数为3,以Q为圆心,QP的长为半径画弧交数轴负半轴于点P1,则P1表示的数是( ) A2B2C12D219如图,在同一直角坐标系中,正比例函数,的图象分别为,则下列关系中正确的是( )ABCD10如图,已知ABC=DCB,下列所给条件不能证明ABCDCB的是( ) AA=DBAB=DCCACB=DBCDAC=BD二、填空题(本大题共6小题,每小题3分,共18分)1若,则x=_2计算_3若m+=3,则m2+=_4如图
3、,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+bkx+6的解集是_ 5如图,1,2,3的大小关系是_ 6已知AOB60,OC是AOB的平分线,点D为OC上一点,过D作直线DEOA,垂足为点E,且直线DE交OB于点F,如图所示若DE2,则DF_三、解答题(本大题共6小题,共72分)1解下列方程组:(1) (2)2先化简,后求值:(a+)(a)a(a2),其中a=3若方程组的解满足x为非负数,y为负数(1)请写出_;(2)求m的取值范围;(3)已知,且,求的取值范围4如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作ABx轴,截取AB=OA(B在A
4、右侧),连接OB,交反比例函数y=的图象于点P(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求OAP的面积5已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?6在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万
5、元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、A4、B5、D6、B7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、3、74、x3.5、1236、4三、解答题(本大题共6小题,共72分)1、(1);(2)2、3、(1)1;(2)m2;(3)-22m-3n184、(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)OAP的面积=55、(1)1,20 km/h;(2)6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析5 / 5