收藏 分销(赏)

2022年浙江省温州市温州实验中学九年级数学第一学期期末检测试题含解析.doc

上传人:快乐****生活 文档编号:2386728 上传时间:2024-05-29 格式:DOC 页数:18 大小:835.04KB
下载 相关 举报
2022年浙江省温州市温州实验中学九年级数学第一学期期末检测试题含解析.doc_第1页
第1页 / 共18页
2022年浙江省温州市温州实验中学九年级数学第一学期期末检测试题含解析.doc_第2页
第2页 / 共18页
2022年浙江省温州市温州实验中学九年级数学第一学期期末检测试题含解析.doc_第3页
第3页 / 共18页
2022年浙江省温州市温州实验中学九年级数学第一学期期末检测试题含解析.doc_第4页
第4页 / 共18页
2022年浙江省温州市温州实验中学九年级数学第一学期期末检测试题含解析.doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角AOB120,半径OA为3m,那么花圃的面积为()A6m2B3m2C2m2Dm22如图,点O为平面直角坐标系的原点,点A在x轴上,OAB是边长为4的等边三角形,以O为旋转中心,

2、将OAB按顺时针方向旋转60,得到OAB,那么点A的坐标为( ) A(2,2)B(2,4)C(2,2)D(2,2)3小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为( )ABC1D4在ABC中,tanC,cosA,则B()A60B90C105D1355抛物线上部分点的横坐标、纵坐标的对应值如下表:3210160466容易看出,是它与轴的一个交点,那么它与轴的另一个交点的坐标为( )ABCD6两相似三角形的相似比为,它们的面积之差为15,则面积之和是( )A39B75C76D407已知点P在线段AB上,且APPB=23,那么ABPB为( )A

3、32B35C52D538如图,ADBECF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB1,BC3,DE2,则EF的长为()A4B.5C6D89从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是()ABCD10下列方程中,是关于x的一元二次方程的是()A5x+52x1By27y0Cax2+bc+c0D2x2+2xx2-1二、填空题(每小题3分,共24分)11为估计某水库鲢鱼的数量,养鱼户李老板先捞上150条鲢鱼并在鲢鱼身上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,发现带红色记号的鱼有三条,据此可估计出该水库中

4、鲢鱼约有_条12菱形边长为4,点为边的中点,点为上一动点,连接、,并将沿翻折得,连接,取的中点为,连接,则的最小值为_ 13一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角为_14一元二次方程的两根为, ,则的值为_ .15因式分解:= 16如图所示,在ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,CBP的平分线交CE于Q,当CQ=CE时,EP+BP= 17若方程有两个不相等的实数根,则的取值范围是_.18如图是二次函数的部分图象,由图象可知不等式的解集是_.三、解答题(共66分)19(10分)将笔记本电脑放置在水平桌面上,显示屏OB与底板O

5、A夹角为115(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架OAC后,电脑转到AOB的位置(如图3),侧面示意图为图4,已知OA=OB=20cm,BOOA,垂足为C(1)求点O的高度OC;(精确到0.1cm)(2)显示屏的顶部B比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏OB与原来的位置OB平行,显示屏OB应绕点O按顺时针方向旋转多少度?参考数据:(sin65=0.906,cos65=0.423,tan65=2.1cot65=0.446)20(6分)如图,有三张不透明的卡片,除正面标记有不同数字外,其它均相同将这三张卡片反面朝上洗匀后,从中随机抽取一张;放

6、回洗匀后,再随机抽取一张我们把第一次抽取的卡片上标记的数字记作,第二次抽取的卡片上标记的数字记作(1)写出为负数的概率;(2)求使得一次函数的图象经过第二、三、四象限的概率(用树状图或列表法求解)21(6分)如图,在ABC中,C=60,AB=4.以AB为直径画O,交边AC于点DAD的长为,求证:BC是O的切线.22(8分)一个不透明的口袋中装有个分别标有数字,的小球,它们的形状、大小完全相同先从口袋中随机摸出一个小球,记下数字为;再在剩下的个小球中随机摸出一个小球,记下数字为,得到点的坐标请用“列表”或“画树状图”等方法表示出点所有可能的结果;求出点在第一象限或第三象限的概率23(8分)已知抛

7、物线C1:y1a(xh)2+2,直线1:y2kxkh+2(k0)(1)求证:直线l恒过抛物线C的顶点;(2)若a0,h1,当txt+3时,二次函数y1a(xh)2+2的最小值为2,求t的取值范围(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1k3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围24(8分)某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆,据统计,第一个月进馆200人次,此后进馆人次逐月增加,到第三个月进馆达到288人次,若进馆人次的月平均增长率相同(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不得超过

8、400人次,若进馆人次的月平均增长率不变,到第几个月时,进馆人数将超过学校图书馆的接纳能力,并说明理由25(10分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染,每轮感染中平均一台电脑会感染多少台电脑?26(10分)超速行驶被称为“马路第一杀手”为了让驾驶员自觉遵守交通规则,湖浔大道公路检测中心在一事故多发地段安装了一个测速仪器,如图所示,已知检测点设在距离公路10米的A处,测得一辆汽车从B处行驶到C处所用时间为1.35秒已知B45,C30(1)求B,C之间的距离(结果保留根号);(2)如果此地限速为70km/h,那么这辆汽车是否超速?请说明理由(参考数

9、据;1.7,1.4)参考答案一、选择题(每小题3分,共30分)1、B【分析】利用扇形的面积公式计算即可【详解】解:扇形花圃的圆心角AOB120,半径OA为3cm,花圃的面积为3,故选:B【点睛】本题考查扇形的面积,解题的关键是记住扇形的面积公式2、A【分析】作BCx轴于C,如图,根据等边三角形的性质得OA=OB=4,AC=OC=2,BOA=60,则易得A点坐标和O点坐标,再利用勾股定理计算出BC=2,然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得AOA=BOB=60,OA=OB=OA=OB,则点A与点B重合,于是可得点A的坐标【详解】解:作BCx轴于C,如图,OAB是边长为4的等边

10、三角形OA=OB=4,AC=OC=1,BOA=60,A点坐标为(-4,0),O点坐标为(0,0),在RtBOC中,BC= ,B点坐标为(-2,2);OAB按顺时针方向旋转60,得到OAB,AOA=BOB=60,OA=OB=OA=OB,点A与点B重合,即点A的坐标为(-2,2),故选:A【点睛】本题考查了坐标与图形变化-旋转:记住关于原点对称的点的坐标特征;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标常见的是旋转特殊角度如:30,45,60,90,180;解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形3、A【解析】试题分析:因为一枚

11、质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是故选A考点:概率公式4、C【分析】直接利用特殊角的三角函数值得出C=30,A=45,进而得出答案【详解】解:tanC,cosA,C=30,A=45,B=180-C-A=105故选:C【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键5、C【分析】根据(0,6)、(1,6)两点求得对称轴,再利用对称性解答即可【详解】抛物线经过(0,6)、(1,6)两点,对称轴x;点(2,0)关于对称轴对称点为(3,0),因此它与x轴的另一个交点的坐标为(3,0)故选C.【点睛】本题考查了二次函数的对称性,解题的关键是求出其对称

12、轴.6、A【分析】由两相似三角形的相似比为,得它们的面积比为4:9,设它们的面积分别为4x,9x,列方程,即可求解.【详解】两相似三角形的相似比为,它们的面积比为4:9,设它们的面积分别为4x,9x,则9x-4x=15,x=3,9x+4x=13x=133=39.故选A.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的面积比等于相似比的平方,是解题的关键.7、D【分析】根据比例的合比性质直接求解即可【详解】解:由题意APPB=23,ABPB=(AP+PB)PB=(2+3)3=53;故选择:D.【点睛】本题主要考查比例线段问题,关键是根据比例的合比性质解答8、C【解析】解:ADBECF,根据

13、平行线分线段成比例定理可得,即,解得EF=6,故选C.9、A【分析】从1到9这9个自然数中,既是2的倍数,又是3的倍数只有6一个,所以既是2的倍数,又是3的倍数的概率是九分之一【详解】解:既是2的倍数,又是3的倍数只有6一个,P(既是2的倍数,又是3的倍数)故选:A【点睛】本题考查了用列举法求概率,属于简单题,熟悉概率的计算公式是解题关键.10、D【分析】根据一元二次方程的定义逐个判断即可【详解】解:A、是关于x的一元一次方程,不是一元二次方程,故本选项不符合题意;B、是关于y的一元二次方程,不是关于x的一元二次方程,故本选项不符合题意;C、只有当a0时,是关于x的一元二次方程,故本选项不符合

14、题意;D、是关于x的一元二次方程,故本选项符合题意;故选:D【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键二、填空题(每小题3分,共24分)11、10000【解析】试题解析:设该水库中鲢鱼约有x条,由于李老板先捞上150条鲢鱼并在上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,数一数带红色记号的鱼有三条,由此依题意得 200:3=x:150,x=10000,估计出该水库中鲢鱼约有10000条12、【分析】取BC的中点为H,在HC上取一点I使,相似比为,由相似三角形的性质可得,即当点D、G、I三点共线时,最小,由点D作BC

15、的垂线交BC延长线于点P,由锐角三角函数和勾股定理求得DI的长度,即可根据求解【详解】取BC的中点为H,在HC上取一点I使,相似比为G为的中点且相似比为,得当点D、G、I三点共线时,最小由点D作BC的垂线交BC延长线于点P即由勾股定理得故答案为:【点睛】本题考查了线段长度的最值问题,掌握相似三角形的性质以及判定定理、锐角三角函数、勾股定理是解题的关键13、120【分析】设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度根据面积关系可得.【详解】设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度由题意得S底面面积=r2,l底面周长=2r,S扇形=3S底面面积=3r2,l扇

16、形弧长=l底面周长=2r由S扇形=l扇形弧长R=3r2=2rR,故R=3r由l扇形弧长=得:2r=解得n=120故答案为:120【点睛】考核知识点:圆锥侧面积问题.熟记弧长和扇形面积公式是关键.14、2【解析】根据一元二次方程根的意义可得+2=0,根据一元二次方程根与系数的关系可得=2,把相关数值代入所求的代数式即可得.【详解】由题意得:+2=0,=2,=-2,=4,=-2+4=2,故答案为2.【点睛】本题考查了一元二次方程根的意义,一元二次方程根与系数的关系等,熟练掌握相关内容是解题的关键.15、【详解】解:=故答案为考点:因式分解-运用公式法16、1【分析】延长BQ交射线EF于M,根据三角

17、形的中位线平行于第三边可得EFBC,根据两直线平行,内错角相等可得M=CBM,再根据角平分线的定义可得PBM=CBM,从而得到M=PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据MEQ和BCQ相似,利用相似三角形对应边成比例列式求解即可【详解】如图,延长BQ交射线EF于M,E、F分别是AB、AC的中点,EFBCM=CBMBQ是CBP的平分线,PBM=CBMM=PBMBP=PMEP+BP=EP+PM=EMCQ=CE,EQ=2CQ由EFBC得,MEQBCQ,EM=2BC=26=1,即EP+BP=1故答案为:1【点睛】本题考查了相似三角形的判定与

18、性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点17、【分析】由题意关于x的方程有两个不相等的实数根,即判别式=b2-4ac2即可得到关于a的不等式,从而求得a的范围【详解】解:b2-4ac=22-42a=4-4a2,解得:a2a的取值范围是a2故答案为:a2【点睛】本题考查一元二次方程根的情况与判别式的关系:2方程有两个不相等的实数根;=2方程有两个相等的实数根;2方程没有实数根18、【解析】求方程的解即是求函数图象与x轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x轴上方的图象可得结果.【详

19、解】由图像可知,二次函数的对称轴x=2,图像与x轴的一个交点为5,所以,另一交点为2-3=-1. x1=-1,x2=5. 不等式的解集是.故答案为【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.三、解答题(共66分)19、(1)8.5cm;(2)显示屏的顶部B比原来升高了10.3cm;(3)显示屏OB应绕点O按顺时针方向旋转25度【解析】(1)BOOA,垂足为C,AOB=115,AOC=65,cosCOA= ,OC=OAcosCOA=20cos65=8.468.5(cm);(2)如图2,过B作BDAO交AO的延长线于DAOB=115,BO

20、D=65sinBOD=,BD=OBsinBOD=20sin65=18.12,OB+OCBD=20+8.4618.12=10.3410.3(cm),显示屏的顶部B比原来升高了10.3cm;(3)如图4,过O作EFOB交AC于E,FEA=BOA=115,FOB=EOC=FEAOCA=11590=25,显示屏OB应绕点O按顺时针方向旋转25度 20、(1);(2)【分析】(1)用负数的个数除以数的总数即为所求的概率;(2)画树状图列举出所有情况,看k0,b0的情况占总情况的多少即可【详解】解:(1)共有3个数,其中负数有2个,那么为负数的概率为(2)画树状图可知,两次抽取卡片试验共有9种不同结果 ,

21、每种可能性相同“一次函数图象经过第二、三、四象限”等价于“且” 抽取卡片满足,有 4 种情况所以,一次函数图象经过第二、三、四象限的概率是【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比注意过二、三、四象限的一次函数的k为负数,b为负数21、证明见解析.【分析】连接OD,根据弧长公式求出AOD的度数,再证明ABBC即可;【详解】证明:如图,连接,是直径且,.设,的长为,解得.即 在O中,. , 即又为直径,是O的切线.【点睛】本题考查切线的判定,圆周角定理以及等腰三角形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型22、(1)详见解析;(2)【解析】(1)

22、通过列表展示即可得到所有可能的结果;(2)找出在第一象限或第三象限的结果数,然后根据概率公式计即可【详解】解:列表如下:从上面的表格可以看出,所有可能出现的结果共有种,且每种结果出现的可能性相同,其中点在第一象限或第三象限的结果有种,所以其的概率【点睛】考查概率公式计算以及用频率估计概率,比较简单,用到的知识点为:概率=所求情况数与总情况数之比,用概率公式计算,比较即可.23、(1)证明见解析;(2)2t1;(3)1a0或0a1【解析】(1)利用二次函数的性质找出抛物线的顶点坐标,将xh代入一次函数解析式中可得出点(h,2)在直线1上,进而可证出直线l恒过抛物线C1的顶点;(2)由a0可得出当

23、xh1时y1a(xh)2+2取得最小值2,结合当txt+3时二次函数y1a(xh)2+2的最小值为2,可得出关于t的一元一次不等式组,解之即可得出结论;(3)令y1y2可得出关于x的一元二次方程,解之可求出点P,Q的横坐标,由线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,可得出1或1,再结合1k3,即可求出a的取值范围【详解】(1)抛物线C1的解析式为y1a(xh)2+2,抛物线的顶点为(h,2),当xh时,y2kxkh+22,直线l恒过抛物线C1的顶点;(2)a0,h1,当x1时,y1a(xh)2+2取得最小值2,又当txt+3时,二次函数y1a(xh)2+2的最小值为2,2t1

24、;(3)令y1y2,则a(xh)2+2k(xh)+2,解得:x1h,x2h+,线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,1或1,k0,0ak或ka0,又1k3,1a0或0a1【点睛】本题考查了二次函数的性质、一次函数图象上点的坐标特征、二次函数的最值、解一元二次方程以及解不等式,解题的关键是:(1)利用二次函数的性质及一次函数图象上点的坐标特征,证出直线l恒过抛物线C的顶点;(2)利用二次函数的性质结合二次函数的最值,找出关于t的一元一次不等式组;(3)令y1y2,求出点P,Q的横坐标24、(1)进馆人次的月平均增长率为20%;(2)到第五个月时,进馆人数将超过学校图书馆的接纳

25、能力,见解析【分析】(1)设进馆人次的月平均增长率为x,根据第三个月进馆达到288次,列方程求解;(2)根据(1)所计算出的月平均增长率,计算出第五个月的进馆人次,再与400比较大小即可【详解】(1)设进馆人次的月平均增长率为x,根据题意,得:200 (1+x)2=288解得:x1=0.2,x2=2.2(舍去)答:进馆人次的月平均增长率为20%(2)第四个月进馆人数为288(1+0.2)=345.6(人次),第五个月进馆人数为288(1+0.2)2=414.1(人次),由于400414.1答:到第五个月时,进馆人数将超过学校图书馆的接纳能力【点睛】本题考查了一元二次方程的应用-增长率问题,列出

26、方程是解答本题的关键本题难度适中,属于中档题25、每轮感染中平均一台电脑感染11台【分析】设每轮感染中平均一台电脑感染x台,根据经过两轮被感染后就会有(1+x)2台电脑被感染,即可得出关于x的一元二次方程,解之取其正值即可得出结论【详解】解:设每轮感染中平均一台电脑感染x台,依题意,得:(1+x)2144,解得:x111,x213(不合题意,舍去)答:每轮感染中平均一台电脑感染11台【点睛】本题考查了一元二次方程的应用-传播问题,掌握传播问题中的等量关系,正确列出一元二次方程是解题的关键26、(1)BC(10+10)m;(2)这辆汽车超速理由见解析【分析】(1)作ADBC于D,则AD=10m,求出CD、BD即可解决问题;(2)求出汽车的速度,即可解决问题,注意统一单位【详解】(1)如图作ADBC于D,则AD10m,在RtABD中,B45,BDAD10m,在RtACD中,C30,tan30,CDAD10m,BCBD+DC(10+10)m;(2)结论:这辆汽车超速理由:BC10+1027m,汽车速度20m/s72km/h,72km/h70km/h,这辆汽车超速【点睛】本题考查解直角三角形的应用,锐角三角函数、速度、时间、路程之间的关系等知识, 解题的关键是学会添加常用辅助线,构造直角三角形解决问题.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服