资源描述
2022-2023学年九上数学期末模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,一斜坡AB的长为m,坡度为1:1.5,则该斜坡的铅直高度BC的高为( )
A.3m B.4m C.6m D.16m
2.已知,则的度数是( )
A.30° B.45° C.60° D.90°
3.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容
则回答正确的是( )
A.◎代表 B.@代表同位角
C.▲代表 D.※代表
4.已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是( )
A.5 B.7 C.5或7 D.10
5.下列各点中,在反比例函数图象上的点是
A. B. C. D.
6.二次函数的图象如图,有下列结论:①,②,③时,,④,⑤当且时,,⑥当时,.其中正确的有( )
A.①②③ B.②④⑥ C. ②⑤⑥ D.②③⑤
7.若式子在实数范围内有意义,则的取值范围是( )
A. B. C. D.
8.下列函数关系式中,是的反比例函数的是( )
A. B. C. D.
9.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为( )
A.0.845×104亿元 B.8.45×103亿元 C.8.45×104亿元 D.84.5×102亿元
10.下列函数中,一定是二次函数的是( )
A. B. C. D.
11.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )
A.五丈 B.四丈五尺 C.一丈 D.五尺
12.如图,是由两个正方体组成的几何体,则该几何体的俯视图为( )
A. B. C. D.
二、填空题(每题4分,共24分)
13.利用标杆CD测量建筑物的高度的示意图如图所示,使标杆顶端的影子与建筑物顶端的影子恰好落在地面的同一点E.若标杆CD的高为1.5米,测得DE=2米,BD=16米,则建筑物的高AB为_____米.
14.某校七年级共名学生参加数学测试,随机抽取名学生的成绩进行统计,其中名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有______人.
15.已知二次函数y=-x-2x+3的图象上有两点A(-7,),B(-8,),则 ▲ .(用>、<、=填空).
16.如图,在平面直角坐标系中,矩形的两边在其坐标轴上,以轴上的某一点为位似中心作矩形,使它与矩形位似,且点,的坐标分别为,,则点的坐标为__________.
17.半径为5的圆内接正六边形的边心距为__________.
18.若关于的一元二次方程没有实数根,则的取值范围是__________.
三、解答题(共78分)
19.(8分)(2015德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.
(1)求面料和里料的单价;
(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.
①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)
②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.
20.(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).
(1)求一次函数y=kx+b的解析式;
(2)求△BOC的面积;
(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为 .
21.(8分)我县从2017年底开始落实国家的脱贫攻坚任务,准备加大基础设施的投入力度,某乡镇从2017年底的100万到2019年底的196万元,用于基础建设以落实国家大政方针.设平均每年所投入的增长率相同.
(1)求2017年底至2019年底该乡镇的年平均基础设施投入增长率?
(2)按照这一投入力度,预计2020年该乡镇将投入多少万元?
22.(10分)如图,点D,E分别是不等边△ABC(即AB,BC,AC互不相等)的边AB,AC的中点.点O是△ABC所在平面上的动点,连接OB,OC,点G,F分别是OB,OC的中点,顺次连接点D,G,F,E.
(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;
(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由)
23.(10分)如图,在平面直角坐标系xOy中,A(3,4),B(0,﹣1),C(4,0).
(1)以点B为中心,把△ABC逆时针旋转90°,画出旋转后的图形;
(2)在(1)中的条件下,
①点C经过的路径弧的长为 (结果保留π);
②写出点A'的坐标为 .
24.(10分)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.
(1)求证:DA=DE;
(2)若AB=6,CD=4,求图中阴影部分的面积.
25.(12分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.
26.在平面直角坐标系中的两个图形与,给出如下定义:为图形上任意一点,为图形上任意一点,如果两点间的距离有最小值,那么称这个最小值为图形间的“和睦距离”,记作,若图形有公共点,则.
(1)如图(1),,,⊙的半径为2,则 , ;
(2)如图(2),已知的一边在轴上,在上,且,,.
①是内一点,若、分别且⊙于E、F,且,判断与⊙的位置关系,并求出点的坐标;
②若以为半径,①中的为圆心的⊙,有,,直接写出的取值范围 .
参考答案
一、选择题(每题4分,共48分)
1、B
【分析】首先根据题意作出图形,然后根据坡度=1:1.5,可得到BC和AC之间的倍数关系式,设BC=x,则AC=1.5x,再由勾股定理求得AB=,从而求得BC的值.
【详解】解:∵斜坡AB的坡度i=BC:AC=1:1.5,AB=,
∴设BC=x,则AC=1.5x,
∴由勾股定理得AB=,
又∵AB=,
∴=,解得:x=4,
∴BC=4m.
故选:B.
【点睛】
本题考查坡度坡角的知识,属于基础题,对坡度的理解及勾股定理的运用是解题关键.
2、C
【解析】根据特殊角三角函数值,可得答案.
【详解】解:由,得α=60°,
故选:C.
【点睛】
本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
3、C
【解析】根据图形可知※代表CD,即可判断D;根据三角形外角的性质可得◎代表∠EFC,即可判断A;利用等量代换得出▲代表∠EFC,即可判断C;根据图形已经内错角定义可知@代表内错角.
【详解】延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).
又∠BEC=∠B+∠C,得∠B=∠EFC.
故AB∥CD(内错角相等,两直线平行).
故选C.
【点睛】
本题考查了平行线的判定,三角形外角的性质,比较简单.
4、B
【解析】先通过解方程求出等腰三角形两边的长,然后利用三角形三边关系确定等腰三角形的腰和底的长,进而求出三角形的周长.
本题解析:
x ²-4x+3=0
(x−3)(x−1)=0,
x−3=0或x−1=0,
所以x ₁=3,x ₂=1,
当三角形的腰为3,底为1时,三角形的周长为3+3+1=7,
当三角形的腰为1,底为3时不符合三角形三边的关系,舍去,
所以三角形的周长为7.
故答案为7.
考点:解一元二次方程-因式分解法, 三角形三边关系, 等腰三角形的性质
5、B
【分析】把各点的坐标代入解析式,若成立,就在函数图象上.即满足xy=2.
【详解】只有选项B:-1×(-2)=2,所以,其他选项都不符合条件.
故选B
【点睛】
本题考核知识点:反比例函数的意义. 解题关键点:理解反比例函数的意义.
6、D
【分析】①只需根据抛物线的开口、对称轴的位置、与y轴的交点位置就可得到a、b、c的符号,从而得到abc的符号;②只需利用抛物线对称轴方程x==1就可得到2a与b的关系;③只需结合图象就可得到当x=1时y=a+b+c最小,从而解决问题;④根据抛物线x=图象在x轴上方,即可得到x=所对应的函数值的符号;⑤由可得,然后利用抛物线的对称性即可解决问题;⑥根据函数图像,即可解决问题.
【详解】解:①由抛物线的开口向下可得a>0,
由对称轴在y轴的右边可得x=>0,从而有b<0,
由抛物线与y轴的交点在y轴的负半轴上可得c<0,
则abc>0,故①错误;
②由对称轴方程x==1得b=-2a,即2a+b=0,故②正确;
③由图可知,当x=1时,y=a+b+c最小,则对于任意实数m(),都满足,即,故③正确;
④由图像可知,x=所对应的函数值为正,
∴x=时,有a-b+c>0,故④错误;
⑤若,且x1≠x2,
则,
∴抛物线上的点(x1,y1)与(x2,y2)关于抛物线的对称轴对称,
∴1-x1=x2-1,即x1+x2=2,故⑤正确.
⑥由图可知,当时,函数值有正数,也有负数,故⑥错误;
∴正确的有②③⑤;
故选:D.
【点睛】
本题主要考查了抛物线的性质(开口、对称轴、对称性、最值性等)、抛物线上点的坐标特征等知识,运用数形结合的思想即可解决问题.
7、C
【解析】直接利用二次根式的定义即可得出答案.
【详解】∵式子在实数范围内有意义,
∴x的取值范围是:x>1.
故选:C.
【点睛】
本题考查了二次根式有意义的条件,正确把握定义是解答本题的关键.
8、C
【分析】根据反比例函数的定义即可得出答案.
【详解】A为正比例函数,B为一次函数,C为反比例函数,D为二次函数,故答案选择C.
【点睛】
本题考查的是反比例函数的定义:形如的式子,其中k≠0.
9、B
【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).8450一共4位,从而8450=8.45×2.故选B.
考点:科学记数法.
10、A
【分析】根据二次函数的定义逐个判断即可.
【详解】A、是二次函数,故本选项符合题意;
B、当a=0时,函数不是二次函数,故本选项不符合题意;
C、不是二次函数,故本选项不符合题意;
D、不是二次函数,故本选项不符合题意;
故选:A.
【点睛】
此题考查二次函数的定义,能熟记二次函数的定义的内容是解题的关键.
11、B
【分析】根据同一时刻物高与影长成正比可得出结论.
【详解】设竹竿的长度为x尺,
∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
∴,
解得x=45(尺),
故选B.
【点睛】
本题考查了相似三角形的应用举例,熟知同一时刻物高与影长成正比是解答此题的关键.
12、D
【分析】根据俯视图是从上面看得到的图形进行求解即可.
【详解】俯视图为从上往下看,
所以小正方形应在大正方形的右上角,
故选D.
【点睛】
本题考查了简单组合体的三视图,熟知俯视图是从上方看得到的图形是解题的关键.
二、填空题(每题4分,共24分)
13、13.5
【分析】根据同一时刻同一地点物高与影长成正比列式求得CD的长即可.
【详解】解:∵AB∥CD,
∴△EBA∽△ECD,
∴,即,
∴AB=13.5(米).
故答案为:13.5
【点睛】
此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的判定与性质.
14、152.
【解析】随机抽取的50名学生的成绩是一个样本,可以用这个样本的优秀率去估计总体的优秀率,从而求得该校七年级学生在这次数学测试中达到优秀的人数.
【详解】随机抽取了50名学生的成绩进行统计,共有20名学生成绩达到优秀,
∴样本优秀率为:20÷50=40%,
又∵某校七年级共380名学生参加数学测试,
∴该校七年级学生在这次数学测试中达到优秀的人数为:380×40%=152人.
故答案为:152.
【点睛】
本题考查了用样本估计总体,解题的关键是求样本的优秀率.
15、>.
【解析】根据已知条件求出二次函数的对称轴和开口方向,再根据点A、B的横坐标的大小即可判断出y1与y1的大小关系:
∵二次函数y=﹣x1﹣1x+3的对称轴是x=﹣1,开口向下,
∴在对称轴的左侧y随x的增大而增大.
∵点A(﹣7,y1),B(﹣8,y1)是二次函数y=﹣x1﹣1x+3的图象上的两点,且﹣7>﹣8,
∴y1>y1.
16、
【分析】首先求出位似图形的位似中心坐标,然后即可得出点D的坐标.
【详解】连接BF交轴于P,如图所示:
∵矩形和矩形,点,的坐标分别为,,
∴点C的坐标为
∵BC∥GF
∴
∴GP=1,PC=2,OP=3
∴点P即为其位似中心
∴OD=6
∴点D坐标为
故答案为:.
【点睛】
此题主要考查位似图形的性质,熟练掌握,即可解题.
17、
【分析】连接OA、OB,作OH⊥AB,根据圆内接正六边形的性质得到△ABO是等边三角形,利用垂径定理及勾股定理即可求出边心距OH.
【详解】如图,连接OA、OB,作OH⊥AB,
∵六边形ABCDEF是圆内接正六边形,
∴∠FAB=∠ABC=180-,
∴∠OAB=∠OBA=60,
∴△ABO是等边三角形,
∴AB=OA=5,
∵OH⊥AB,
∴AH=2.5,
∴OH=,
故答案为:.
【点睛】
此题考查圆内接正六边形的性质,垂径定理,勾股定理.解题中熟记正六边形的性质得到∠FAB=∠ABC=120是解题的关键,由此即可证得△ABO是等边三角形,利用勾股定理解决问题.
18、
【分析】根据根判别式可得出关于的一元一次不等式组,解不等式组即可得出结论.
【详解】由于关于一元二次方程没有实数根,
∵,,,
∴,
解得:.
故答案为:.
【点睛】
本题考查了一元二次方程为常数)的根的判别式.当0,方程有两个不相等的实数根;当0,方程有两个相等的实数根;当0,方程没有实数根.
三、解答题(共78分)
19、(1)面料的单价为3元/米,里料的单价为2元/米;(2)①5;②5%.
【分析】(1)、设里料的单价为x元/米,面料的单价为(2x+10)元/米,根据成本为1元列出一元一次方程,从而得出答案;
(2)、设打折数为m,根据利润不低于4元列出不等式,从而得出m的值;
(3)、设vip客户享受的降价率为x,根据题意列出分式方程,从而得出答案
【详解】解:(1)、设里料的单价为x元/米,面料的单价为(2x+10)元/米.
根据题意得:0.5x+1.2(2x+10)=1.解得:x=2.2x+10=2×2+10=3.
答:面料的单价为3元/米,里料的单价为2元/米.
(2)、设打折数为m.
根据题意得:13×﹣1﹣14≥4.解得:m≥5.∴m的最小值为5.
答:m的最小值为5.
(3)、13×0.5=12元.
设vip客户享受的降价率为x.
根据题意得:,解得:x=0.05
经检验x=0.05是原方程的解.
答;vip客户享受的降价率为5%.
【点睛】
本题考查(1)、分式方程的应用;(2)、一元一次方程的应用;(3)、不等式的应用,正确理解题目中的等量关系是解题关键
20、(1)y=x+2;(2)3;(3)(﹣2,5)或(﹣5,3)或(,).
【分析】(1)把C点坐标代入正比例函数解析式可求得m,再把A、C坐标代入一次函数解析式可求得k、b,可求得答案;
(2)先求出点B的坐标,然后根据三角形的面积公式即可得到结论;
(3)由题意可分AB为直角边和AB为斜边两种情况,当AB为直角边时,再分A为直角顶点和B为直角顶点两种情况,此时分别设对应的D点为D2和D1,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,可证明△BED1≌△AOB(AAS),可求得D1的坐标,同理可求得D2的坐标,AD1与BD2的交点D3就是AB为斜边时的直角顶点,据此即可得出D点的坐标.
【详解】(1)∵点C(m,4)在正比例函数y=x的图象上,
∴m=4,
解得:m=3,
∴C(3,4),
∵点C(3,4)、A(﹣3,0)在一次函数y=kx+b的图象上,
∴,
解得,
∴一次函数的解析式为y=x+2;
(2)在y=x+2中,令x=0,解得y=2,
∴B(0,2),
∴S△BOC=×2×3=3;
(3)分AB为直角边和AB为斜边两种情况,
当AB为直角边时,分A为直角顶点和B为直角顶点两种情况,
如图,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,
∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,
∴AB=BD1,
∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,
∴∠BAO=∠EBD1,
∵在△BED1和△AOB中,
,
∴△BED1≌△AOB(AAS),
∴BE=AO=3,D1E=BO=2,
∴OE=OB+BE=2+3=5,
∴点D1的坐标为(﹣2,5);
同理可得出:△AFD2≌△AOB,
∴FA=BO=2,D2F=AO=3,
∴点D2的坐标为(﹣5,3),
当AB为斜边时,如图,
∵∠D1AB=∠D2BA=45°,
∴∠AD3B=90°,
设AD1的解析式为y=k1x+b1,
将A(-3,0)、D1(-2,5)代入得,
解得:,
所以AD1的解析式为:y=5x+15,
设BD2的解析式为y=k2x+b2,
将B(0,2)、D2(-5,3)代入得,
解得:,
所以AD2的解析式为:y=x+2,
解方程组得:,
∴D3(,),
综上可知点D的坐标为(﹣2,5)或(﹣5,3)或(,).
故答案为:(﹣2,5)或(﹣5,3)或(,).
【点睛】
本题考查了一次函数与几何综合题,涉及了待定系数法求函数解析式,直线交点坐标,全等三角形的判定与性质,等腰三角形的性质等,综合性较强,正确把握并能熟练运用相关知识是解题的关键.注意分类思想的运用.
21、(1)年平均增长率为40%;(2)预计2020年该乡镇将投入274.4万元.
【分析】(1)设年平均增长率为x,根据题意列出方程,解方程即可得出答案;
(2)用2019年的196万元×(1+年增长率)即可得出答案.
【详解】(1)设年平均增长率为x,由题意得
解得:=40%,(舍)
∴年平均增长率为40%;
(2)196(1+40%)=274.4(万元)
答:2017年底至2019年底该乡镇的年平均基础设施投入增长为40%,预计2020年该乡镇将投入274.4万元.
【点睛】
本题主要考查一元二次方程的应用,读懂题意列出方程是解题的关键.
22、(1)见详解;(2)点O的位置满足两个要求:AO=BC,且点O不在射线CD、射线BE上.理由见详解
【分析】(1)根据三角形的中位线定理可证得DE∥GF,DE=GF,即可证得结论;
(2)根据三角形的中位线定理结合菱形的判定方法分析即可.
【详解】(1)∵D、E分别是边AB、AC的中点.
∴DE∥BC,DE=BC.
同理,GF∥BC,GF=BC.
∴DE∥GF,DE=GF.
∴四边形DEFG是平行四边形;
(2)点O的位置满足两个要求:AO=BC,且点O不在射线CD、射线BE上.
连接AO,
由(1)得四边形DEFG是平行四边形,
∵点D,G,F分别是AB,OB,OC的中点,
∴,,
当AO=BC时,GF=DF,
∴四边形DGFE是菱形.
【点睛】
本题主要考查三角形的中位线定理,平行四边形、菱形的判定,平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
23、(1)见解析;(2)①,②(﹣5,2).
【分析】(1)利用网格特点和旋转的性质画出A、C的对应点A′、C′,然后顺次连接即可;
(2)①先利用勾股定理计算出BC的长,然后利用弧长公式计算;
②利用(1)中所画图形写出点A′的坐标.
【详解】解:(1)如图,△A′BC′为所作;
(2)①BC=,
故点C经过的路径弧的长==π;
②点A′的坐标为(﹣5,2).
故答案为:π,(﹣5,2).
【点睛】
本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形,也考查了弧长公式的应用.
24、(1)证明见解析;(2)
【分析】(1)连接OE,BE,根据已知条件证明CD为⊙O的切线,然后再根据切线长定理即可证明DA=DE;
(2) 如图,连接OC,过点D作DF⊥BC于点F,根据S阴影部分=S四边形BCEO﹣S扇形OBE,利用分割法即可求得阴影部分的面积.
【详解】(1)如图,连接OE、BE,
∵OB=OE,
∴∠OBE=∠OEB.
∵BC=EC,
∴∠CBE=∠CEB,
∴∠OBC=∠OEC.
∵BC为⊙O的切线,
∴∠OEC=∠OBC=90°;
∵OE为半径,
∴CD为⊙O的切线,
∵AD切⊙O于点A,
∴DA=DE;
(2)如图,连接OC,过点D作DF⊥BC于点F,则四边形ABFD是矩形,
∴AD=BF,DF=AB=6,
∴DC=BC+AD=4,
∵CF==2,
∴BC﹣AD=2,
∴BC=3,
在直角△OBC中,tan∠BOC==,
∴∠BOC=60°.
在△OEC与△OBC中,
,
∴△OEC≌△OBC(SSS),
∴∠BOE=2∠BOC=120°,
∴S阴影部分=S四边形BCEO﹣S扇形OBE=2×BC•OB﹣ = 9﹣3π.
【点睛】
本题考查了切线的判定与性质、切线长定理,扇形的面积等,正确添加辅助线,熟练运用相关知识是解题的关键.
25、树高为 5.5 米
【解析】根据两角相等的两个三角形相似,可得 △DEF∽△DCB ,利用相似三角形的对边成比例,可得, 代入数据计算即得BC的长,由 AB=AC+BC ,即可求出树高.
【详解】∵∠DEF=∠DCB=90°,∠D=∠D,
∴△DEF∽△DCB
∴ ,
∵DE=0.4m,EF=0.2m,CD=8m,
∴,
∴CB=4(m),
∴AB=AC+BC=1.5+4=5.5(米)
答:树高为 5.5 米.
【点睛】
本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.
26、(1)2,;(2)①是⊙的切线,;②或.
【分析】(1)根据图形M,N间的“和睦距离”的定义结合已知条件求解即可.
(2)①连接DF,DE,作DH⊥AB于H.设OC=x.首先证明∠CBO=30,再证明DH=DE即可证明是⊙的切线,再求出OE,DE的长即可求出点D的坐标.
②根据,得到不等式组解决问题即可.
【详解】(1)∵A(0,1),C(3,4),⊙C的半径为2,
∴d(C,⊙C)=2,
d(O,⊙C)=AC−2=,
故答案为2;;
(2)①连接,作于.设.
∵,
∴,
解得,
∴,
∴,,
∵是⊙的切线,
∴平分,
∴,
∴,
∵,
∴,
∴,
∴是⊙的切线.
∵,
设,
∵,
∴,
∴,,
∴,
∴,
②∵
∴B(0,)
∴BD=
由,,得
解得或
故答案为:或.
【点睛】
本题属于圆综合题,考查了图形M,N间的“和睦距离”,解直角三角形的应用,切线的判定和性质,不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.
展开阅读全文