1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷
2、和答题卡一并交回。一、选择题(每题4分,共48分)1如图,一斜坡AB的长为m,坡度为1:1.5,则该斜坡的铅直高度BC的高为( )A3mB4mC6mD16m2已知,则的度数是( )A30B45C60D903下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A代表B代表同位角C代表D代表4已知等腰三角形的腰和底的长分别是一元二次方程x24x+3=0的根,则该三角形的周长可以是()A5B7C5或7D105下列各点中,在反比例函数图象上的点是ABCD6二次函数的图象如图,有下列结论:,时,当且时,当时,.其中正确的有( )ABC D7若式子在实数范围内有意义,则的取值范围是(
3、 )ABCD8下列函数关系式中,是的反比例函数的是( )ABCD9未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题将8450亿元用科学记数法表示为( )A0.845104亿元B8.45103亿元C8.45104亿元D84.5102亿元10下列函数中,一定是二次函数的是( )ABCD11孙子算经是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿
4、的长为()A五丈B四丈五尺C一丈D五尺12如图,是由两个正方体组成的几何体,则该几何体的俯视图为( )ABCD二、填空题(每题4分,共24分)13利用标杆CD测量建筑物的高度的示意图如图所示,使标杆顶端的影子与建筑物顶端的影子恰好落在地面的同一点E若标杆CD的高为1.5米,测得DE2米,BD16米,则建筑物的高AB为_米14某校七年级共名学生参加数学测试,随机抽取名学生的成绩进行统计,其中名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有_人.15已知二次函数y=x2x3的图象上有两点A(7,),B(8,),则 .(用、0,由对称轴在y轴的右边可得x=0,从而有b0,由
5、抛物线与y轴的交点在y轴的负半轴上可得c0,故错误;由对称轴方程x=1得b=-2a,即2a+b=0,故正确;由图可知,当x=1时,y=a+b+c最小,则对于任意实数m(),都满足,即,故正确;由图像可知,x=所对应的函数值为正,x=时,有a-b+c0,故错误;若,且x1x2,则,抛物线上的点(x1,y1)与(x2,y2)关于抛物线的对称轴对称,1-x1=x2-1,即x1+x2=2,故正确由图可知,当时,函数值有正数,也有负数,故错误;正确的有;故选:D.【点睛】本题主要考查了抛物线的性质(开口、对称轴、对称性、最值性等)、抛物线上点的坐标特征等知识,运用数形结合的思想即可解决问题7、C【解析】
6、直接利用二次根式的定义即可得出答案【详解】式子在实数范围内有意义,x的取值范围是:x1故选:C【点睛】本题考查了二次根式有意义的条件,正确把握定义是解答本题的关键8、C【分析】根据反比例函数的定义即可得出答案.【详解】A为正比例函数,B为一次函数,C为反比例函数,D为二次函数,故答案选择C.【点睛】本题考查的是反比例函数的定义:形如的式子,其中k0.9、B【解析】根据科学记数法的定义,科学记数法的表示形式为a10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于1还是小于1当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一
7、个有效数字前0的个数(含小数点前的1个0)8450一共4位,从而8450=8.452故选B考点:科学记数法10、A【分析】根据二次函数的定义逐个判断即可【详解】A、是二次函数,故本选项符合题意;B、当a=0时,函数不是二次函数,故本选项不符合题意;C、不是二次函数,故本选项不符合题意;D、不是二次函数,故本选项不符合题意;故选:A【点睛】此题考查二次函数的定义,能熟记二次函数的定义的内容是解题的关键11、B【分析】根据同一时刻物高与影长成正比可得出结论【详解】设竹竿的长度为x尺,竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,解得x=45(尺),故选B【点睛】本题
8、考查了相似三角形的应用举例,熟知同一时刻物高与影长成正比是解答此题的关键12、D【分析】根据俯视图是从上面看得到的图形进行求解即可.【详解】俯视图为从上往下看,所以小正方形应在大正方形的右上角,故选D.【点睛】本题考查了简单组合体的三视图,熟知俯视图是从上方看得到的图形是解题的关键.二、填空题(每题4分,共24分)13、13.5【分析】根据同一时刻同一地点物高与影长成正比列式求得CD的长即可【详解】解:ABCD,EBAECD,即,AB13.5(米)故答案为:13.5【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的判定与性质.14、152.【解析】随机抽取的50名学生的成绩是一
9、个样本,可以用这个样本的优秀率去估计总体的优秀率,从而求得该校七年级学生在这次数学测试中达到优秀的人数【详解】随机抽取了50名学生的成绩进行统计,共有20名学生成绩达到优秀,样本优秀率为:2050=40%,又某校七年级共380名学生参加数学测试,该校七年级学生在这次数学测试中达到优秀的人数为:38040%=152人.故答案为:152.【点睛】本题考查了用样本估计总体,解题的关键是求样本的优秀率.15、【解析】根据已知条件求出二次函数的对称轴和开口方向,再根据点A、B的横坐标的大小即可判断出y1与y1的大小关系:二次函数y=x11x+3的对称轴是x=1,开口向下,在对称轴的左侧y随x的增大而增大
10、点A(7,y1),B(8,y1)是二次函数y=x11x+3的图象上的两点,且78,y1y116、【分析】首先求出位似图形的位似中心坐标,然后即可得出点D的坐标.【详解】连接BF交轴于P,如图所示:矩形和矩形,点,的坐标分别为,点C的坐标为BCGFGP=1,PC=2,OP=3点P即为其位似中心OD=6点D坐标为故答案为:.【点睛】此题主要考查位似图形的性质,熟练掌握,即可解题.17、【分析】连接OA、OB,作OHAB,根据圆内接正六边形的性质得到ABO是等边三角形,利用垂径定理及勾股定理即可求出边心距OH.【详解】如图,连接OA、OB,作OHAB,六边形ABCDEF是圆内接正六边形,FAB=AB
11、C=180-,OAB=OBA=60,ABO是等边三角形,AB=OA=5,OHAB,AH=2.5,OH=,故答案为:.【点睛】此题考查圆内接正六边形的性质,垂径定理,勾股定理.解题中熟记正六边形的性质得到FAB=ABC=120是解题的关键,由此即可证得ABO是等边三角形,利用勾股定理解决问题.18、【分析】根据根判别式可得出关于的一元一次不等式组,解不等式组即可得出结论【详解】由于关于一元二次方程没有实数根,解得:故答案为:【点睛】本题考查了一元二次方程为常数)的根的判别式当0,方程有两个不相等的实数根;当0,方程有两个相等的实数根;当0,方程没有实数根三、解答题(共78分)19、(1)面料的单
12、价为3元/米,里料的单价为2元/米;(2)5;5%【分析】(1)、设里料的单价为x元/米,面料的单价为(2x+10)元/米,根据成本为1元列出一元一次方程,从而得出答案;(2)、设打折数为m,根据利润不低于4元列出不等式,从而得出m的值;(3)、设vip客户享受的降价率为x,根据题意列出分式方程,从而得出答案【详解】解:(1)、设里料的单价为x元/米,面料的单价为(2x+10)元/米根据题意得:0.5x+1.2(2x+10)=1解得:x=22x+10=22+10=3答:面料的单价为3元/米,里料的单价为2元/米(2)、设打折数为m根据题意得:131144解得:m5m的最小值为5答:m的最小值为
13、5(3)、130.5=12元设vip客户享受的降价率为x根据题意得:,解得:x=0.05经检验x=0.05是原方程的解答;vip客户享受的降价率为5%【点睛】本题考查(1)、分式方程的应用;(2)、一元一次方程的应用;(3)、不等式的应用,正确理解题目中的等量关系是解题关键20、(1)yx+2;(2)3;(3)(2,5)或(5,3)或(,)【分析】(1)把C点坐标代入正比例函数解析式可求得m,再把A、C坐标代入一次函数解析式可求得k、b,可求得答案;(2)先求出点B的坐标,然后根据三角形的面积公式即可得到结论;(3)由题意可分AB为直角边和AB为斜边两种情况,当AB为直角边时,再分A为直角顶点
14、和B为直角顶点两种情况,此时分别设对应的D点为D2和D1,过点D1作D1Ey轴于点E,过点D2作D2Fx轴于点F,可证明BED1AOB(AAS),可求得D1的坐标,同理可求得D2的坐标,AD1与BD2的交点D3就是AB为斜边时的直角顶点,据此即可得出D点的坐标【详解】(1)点C(m,4)在正比例函数yx的图象上,m4,解得:m3,C(3,4),点C(3,4)、A(3,0)在一次函数ykx+b的图象上,解得,一次函数的解析式为yx+2;(2)在yx+2中,令x0,解得y2,B(0,2),SBOC233;(3)分AB为直角边和AB为斜边两种情况,当AB为直角边时,分A为直角顶点和B为直角顶点两种情
15、况,如图,过点D1作D1Ey轴于点E,过点D2作D2Fx轴于点F, 点D在第二象限,DAB是以AB为直角边的等腰直角三角形,ABBD1,D1BE+ABO90,ABO+BAO90,BAOEBD1,在BED1和AOB中,BED1AOB(AAS),BEAO3,D1EBO2,OE=OB+BE=2+3=5,点D1的坐标为(2,5);同理可得出:AFD2AOB,FABO2,D2FAO3,点D2的坐标为(5,3),当AB为斜边时,如图,D1ABD2BA45,AD3B90,设AD1的解析式为y=k1x+b1,将A(-3,0)、D1(-2,5)代入得,解得:,所以AD1的解析式为:y=5x+15,设BD2的解析
16、式为y=k2x+b2,将B(0,2)、D2(-5,3)代入得,解得:,所以AD2的解析式为:y=x+2,解方程组得:,D3(,),综上可知点D的坐标为(2,5)或(5,3)或(,)故答案为:(2,5)或(5,3)或(,)【点睛】本题考查了一次函数与几何综合题,涉及了待定系数法求函数解析式,直线交点坐标,全等三角形的判定与性质,等腰三角形的性质等,综合性较强,正确把握并能熟练运用相关知识是解题的关键注意分类思想的运用21、(1)年平均增长率为40%;(2)预计2020年该乡镇将投入274.4万元【分析】(1)设年平均增长率为x,根据题意列出方程,解方程即可得出答案;(2)用2019年的196万元
17、(1+年增长率)即可得出答案【详解】(1)设年平均增长率为x,由题意得解得:40%,(舍)年平均增长率为40%;(2)196(1+40%)=274.4(万元)答:2017年底至2019年底该乡镇的年平均基础设施投入增长为40%,预计2020年该乡镇将投入274.4万元【点睛】本题主要考查一元二次方程的应用,读懂题意列出方程是解题的关键22、(1)见详解;(2)点O的位置满足两个要求:AOBC,且点O不在射线CD、射线BE上理由见详解【分析】(1)根据三角形的中位线定理可证得DEGF,DEGF,即可证得结论;(2)根据三角形的中位线定理结合菱形的判定方法分析即可.【详解】(1)D、E分别是边AB
18、、AC的中点DEBC,DEBC同理,GFBC,GFBCDEGF,DEGF四边形DEFG是平行四边形;(2)点O的位置满足两个要求:AOBC,且点O不在射线CD、射线BE上连接AO,由(1)得四边形DEFG是平行四边形,点D,G,F分别是AB,OB,OC的中点,当AOBC时,GF=DF,四边形DGFE是菱形【点睛】本题主要考查三角形的中位线定理,平行四边形、菱形的判定,平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.23、(1)见解析;(2),(5,2)【分析】(1)利用网格特点和旋转的性质画出A、C的对应点A、C,然后顺次连
19、接即可;(2)先利用勾股定理计算出BC的长,然后利用弧长公式计算;利用(1)中所画图形写出点A的坐标【详解】解:(1)如图,ABC为所作;(2)BC,故点C经过的路径弧的长;点A的坐标为(5,2)故答案为:,(5,2)【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形,也考查了弧长公式的应用24、(1)证明见解析;(2) 【分析】(1)连接OE,BE,根据已知条件证明CD为O的切线,然后再根据切线长定理即可证明DA=DE;(2) 如图,连接OC,过点D作DFB
20、C于点F,根据S阴影部分=S四边形BCEOS扇形OBE,利用分割法即可求得阴影部分的面积【详解】(1)如图,连接OE、BE,OB=OE,OBE=OEBBC=EC,CBE=CEB,OBC=OECBC为O的切线,OEC=OBC=90;OE为半径,CD为O的切线,AD切O于点A,DA=DE;(2)如图,连接OC,过点D作DFBC于点F,则四边形ABFD是矩形,AD=BF,DF=AB=6,DC=BC+AD=4,CF=2,BCAD=2,BC=3,在直角OBC中,tanBOC=,BOC=60在OEC与OBC中,OECOBC(SSS),BOE=2BOC=120,S阴影部分=S四边形BCEOS扇形OBE=2B
21、COB = 93【点睛】本题考查了切线的判定与性质、切线长定理,扇形的面积等,正确添加辅助线,熟练运用相关知识是解题的关键.25、树高为 5.5 米【解析】根据两角相等的两个三角形相似,可得 DEFDCB ,利用相似三角形的对边成比例,可得, 代入数据计算即得BC的长,由 ABAC+BC ,即可求出树高.【详解】DEFDCB90,DD, DEFDCB ,DE0.4m,EF0.2m,CD8m, CB4(m),ABAC+BC1.5+45.5(米)答:树高为 5.5 米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型26、(1)2,;(2)是的切线,;或【分析】(
22、1)根据图形M,N间的“和睦距离”的定义结合已知条件求解即可(2)连接DF,DE,作DHAB于H设OCx首先证明CBO30,再证明DHDE即可证明是的切线,再求出OE,DE的长即可求出点D的坐标根据,得到不等式组解决问题即可【详解】(1)A(0,1),C(3,4),C的半径为2,d(C,C)2,d(O,C)AC2,故答案为2;(2)连接,作于.设,解得,是的切线,平分,是的切线,设,B(0,)BD=由,得解得或故答案为:或【点睛】本题属于圆综合题,考查了图形M,N间的“和睦距离”,解直角三角形的应用,切线的判定和性质,不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题