收藏 分销(赏)

三-函数奇偶性与周期性.doc

上传人:精*** 文档编号:2244410 上传时间:2024-05-23 格式:DOC 页数:22 大小:674.50KB
下载 相关 举报
三-函数奇偶性与周期性.doc_第1页
第1页 / 共22页
三-函数奇偶性与周期性.doc_第2页
第2页 / 共22页
三-函数奇偶性与周期性.doc_第3页
第3页 / 共22页
三-函数奇偶性与周期性.doc_第4页
第4页 / 共22页
三-函数奇偶性与周期性.doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、第三节函数的奇偶性与周期性【最新考纲】1.了解函数奇偶性的含义;会运用基本初等函数的图象分析函数的奇偶性与周期性.2.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性1函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)是奇函数关于原点对称2.周期性(1)周期函数对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(xT)f(x),那么就称函数yf(x)为周期函数,称T为这个函数的周期

2、(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期1(质疑夯基)判断下列结论的正误(正确的打“”,错误的打“”)(1)函数yx2,x(0,)是偶函数()(2)若函数f(x)为奇函数,则一定有f(0)0.()(3)若函数yf(xa)是偶函数,则函数yf(x)关于直线xa对称()(4)若函数yf(xb)是奇函数,则函数yf(x)关于点(b,0)中心对称()答案:(1)(2)(3)(4)2已知f(x)ax2bx是定义在a1,2a上的偶函数,那么ab的值是()AB.C. D解析:依题意b0,且2a(a1),b0且a,则ab.答案:B3(2

3、015福建卷)下列函数为奇函数的是()Ay B. y|sin x|Cycos x Dyexex解析:对于D,f(x)exex的定义域为R,f(x)exexf(x),故yexex为奇函数而y的定义域为x|x0,不具有对称性,故y为非奇非偶函数y|sin x|和ycos x为偶函数答案:D4已知定义在R上的函数f(x)满足f(x)f,且f(1)2,则f(2 016)_解析:f(x)f,f(x5)fff(x)f(x)是以5为周期的周期函数f(2 016)f(40351)f(1)2.答案:25(2014课标全国卷)偶函数yf(x)的图象关于直线x2对称,f(3)3,则f(1)_解析:f(x)为偶函数,

4、f(1)f(1)又f(x)的图象关于直线x2对称,f(1)f(3)f(1)3.答案:3一点注意分段函数奇偶性判定时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性两个结论1若f(x)定义域不关于原点对称,则f(x)不具有奇偶性2若f(xa)f(x)或f(xa)或f(xa)(a是常数,且a0),则2a为函数f(x)的一个周期两个性质1若奇函数f(x)在x0处有定义,则f(0)0.2若f(x)为偶函数,则f(|x|)f(x)三种方法判断函数的奇偶性,一般有三种方法:1.定义法;2.图象法;3.性质法一、选择题1(2015北京卷)下列函数中为偶函

5、数的()Ayx2sin xByx2cos xCy|ln x| Dy2x解析:因为yx2是偶函数,ysin x是奇函数,ycos x是偶函数,所以A选项为奇函数,B选项为偶函数;C选项中函数的定义域为(0,),故为非奇非偶函数;D选项为指数函数y,是非奇非偶函数答案:B2函数ylog2的图象()A关于原点对称 B关于直线yx对称C关于y轴对称 D关于直线yx对称解析:由0得1x1,即函数定义域为(1,1),又f(x)log2log2f(x),函数ylog2为奇函数答案:A3函数f(x)lg|sin x|是()A最小正周期为的奇函数B最小正周为2的奇函数C最小正周期为的偶函数D最小正周期为2的偶函

6、数解析:易知函数的定义域为x|xk,kZ,又f(x)lg|sin(x)|f(x)所以f(x)是偶函数,又函数y|sin x|的最小正周期为,所以函数f(x)lg|sin x|是最小正周期为的偶函数答案:C4(2016河北五校联考)设f(x)是定义在R上的周期为3的函数,当x2,1)时,f(x),则f()()A0B1 C.D1解析:因为f(x)是周期为3的周期函数,所以f()f(3)f()4()221.答案:D5(2016石家庄一模)已知偶函数f(x),当x0,2)时,f(x)2sin x,当x2,)时,f(x)log2x,则f()f(4)()A2 B1C3 D.2解析:因为f()f()2sin

7、,f(4)log242,所以f()f(4)2.答案:D6(2014山东卷)对于函数f(x),若存在常数a0,使得x取定义域内的每一个值,都有f(x)f(2ax),则称f(x)为准偶函数下列函数中是准偶函数的是()Af(x) Bf(x)x2Cf(x)tan x Df(x)cos(x1)解析:由f(x)f(2ax)知f(x)的图象关于xa对称,且a0,A,C中两函数图象无对称轴,B中函数图象的对称轴只有x0,而D中当ak1(kZ)时,xa都是ycos(x1)的图象的对称轴答案:D二、填空题7函数f(x)为奇函数,则a_解析:由题意知,g(x)(x1)(xa)为偶函数,a1.答案:18(2016浙江

8、杭州七校联考)已知函数f(x)是(,)上的奇函数,当x0,2)时,f(x)x2,若对于任意xR,都有f(x4)f(x),则f(2)f(3)的值为_解析:由题意得f(2)f(24)f(2)f(2),f(2)0.f(3)f(14)f(1)f(1)1,f(2)f(3)1.答案:1三、解答题10设f(x)是定义域为R的周期函数,最小正周期为2,且f(1x)f(1x),当1x0时,f(x)x.(1)判定f(x)的奇偶性;(2)试求出函数f(x)在区间1,2上的表达式解:(1)f(1x)f(1x),f(x)f(2x)又f(x2)f(x),f(x)f(x)f(x)是偶函数(2)当x0,1时,x1,0,则f(

9、x)f(x)x;进而当1x2时,1x20,f(x)f(x2)(x2)x2.故f(x)11设f(x)是(,)上的奇函数,f(x2)f(x),当0x1时,f(x)x.(1)求f()的值;(2)当4x4时,求f(x)的图象与x轴所围成图形的面积解:(1)由f(x2)f(x)得,f(x4)f(x2)2f(x2)f(x),所以f(x)是以4为周期的周期函数,f()f(14)f(4)f(4)(4)4.(2)由f(x)是奇函数与f(x2)f(x),得:f(x1)2f(x1)f(x1),即f(1x)f(1x)故知函数yf(x)的图象关于直线x1对称又当0x1时,f(x)x,且f(x)的图象关于原点成中心对称,

10、则f(x)的图象如下图所示当4x4时,f(x)的图象与x轴围成的图形面积为S,则S4SOAB44. 函数的概念与性质函数是中学数学的核心概念,函数的概念与性质既是中学数学教学的重点,又是高考考查的重点与热点,题型以选择题、填空题为主,既重视三基,又注重思想方法的考查备考时,要透彻理解函数,尤其是分段函数的概念,切实掌握函数的性质,并加强数形结合思想、分类讨论思想函数与方程思想的应用意识强化点1函数的定义域与解析式 (1)(2015湖北卷)函数f(x)lg 的定义域为()A(2,3)B(2,4C(2,3)(3,4 D(1,3)(3,6(2)(2014湖南卷)已知f(x),g(x)分别是定义在R上

11、的偶函数和奇函数,且f(x)g(x)x3x21,则f(1)g(1)()A3 B1C1 D3解析:(1)法一当x3和x5时,函数均没有意义,故可以排除选项B,D;当x4时,函数有意义,可排除选项A,故选C.法二由得故函数定义域为(2,3)(3,4,故选C.(2)法一f(x)g(x)x3x21,f(x)g(x)x3x21,又由题意可知f(x)f(x),g(x)g(x),f(x)g(x)x3x21,则f(1)g(1)1.法二令f(x)x21,g(x)x3,显然符合题意,f(1)g(1)121131.答案:(1)C(2)C1本例(1)考查了函数定义域的求法,绝对值不等式和分式不等式的求解,注重考查运算

12、求解能力,在利用数轴求交集时,考查了数形结合思想的应用2在求解(2)时,巧妙地沟通未知与已知的内在联系,先求出f(x)g(x)的表达式,进而求出f(1)g(1)的值,解法简捷明快【变式训练】(2016武汉一模)若函数f(x)的定义域为R,则a的取值范围是_解析:由题意知2x22axa10恒成立,x22axa0恒成立,4a24a0,1a0.答案:1,0强化点2函数的值域与最值 (2015浙江卷)已知函数f(x)则f(f(3)_,f(x)的最小值是_解析: f(3)lg(3)21lg 101, f(f(3)f(1)1230.当x1时,x32 323,当且仅当x,即x时等号成立,此时f(x)min2

13、30; z当x1时,lg(x21)lg(021)0,此时f(x)min0.所以f(x)的最小值为23.答案:023本题运用分段函数问题分段求解的方法,体现了分类讨论思想的应用【变式训练】(2016唐山一中月考)已知函数y的最大值为M,最小值为m则为()A. B.C. D.解析:2x2,y242,当x0时,M2,当x2时,m2.答案:B强化点3函数性质的综合应用(多维探究)高考常将函数的单调性、奇偶性、周期性综合考查,常见的命题角度有:(1)单调性与奇偶性渗透;(2)周期性与奇偶性交汇;(3)单调性、奇偶性、周期性综合交汇命题角度一单调性与奇偶性交汇1已知函数f(x)是定义在R上的偶函数,且在区

14、间0,)上单调递增若实数a满足f(log2a)f(loga)2f(1),则a的取值范围是()A1,2 B.C. D(0,2解析:f(loga)f(log2a)f(log2a),原不等式可化为f(log2a)f(1)又f(x)在区间0,)上单调递增,0log2a1,即1a2.f(x)是偶函数,f(log2a)f(1)又f(x)在区间(,0上单调递减,1log2a0,a1.综上可知a2.答案:C角度二奇偶性与周期性的应用2(2014安徽卷)若函数f(x)(xR)是周期为4的奇函数,且在0,2上的解析式为f(x)则ff_解析:由于函数f(x)是周期为4的奇函数,所以ffffffffsin .答案:角

15、度三单调性、奇偶性与周期性综合交汇3已知定义在R上的奇函数f(x)满足f(x4)f(x),且在区间0,2上是增函数,则()Af(25)f(11)f(80)Bf(80)f(11)f(25)Cf(11)f(80)f(25)Df(25)f(80)f(11)解析:f(x)满足f(x4)f(x),f(x8)f(x),函数f(x)是以8为周期的周期函数,则f(25)f(1),f(80)f(0),f(11)f(3)由f(x)是定义在R上的奇函数,且满足f(x4)f(x),得f(11)f(3)f(1)f(1)f(x)在区间0,2上是增函数,f(x)在R上是奇函数,f(x)在区间2,2上是增函数,f(1)f(0

16、)f(1),即f(25)f(80)f(11)答案:D函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性的综合注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性(2)周期性与奇偶性的综合此类问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解(3)单调性、奇偶性与周期性的综合解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解【变式训练】(2017吉林长春质检)已知定义在R上的偶函数f(x)在0,)上单调递增,且f(1)0,则不等式f(x2)0的解集是_解析:由已知可得x21或x21,解得x3或x1,

17、所求解集是(,13,)答案:(,13,)一、选择题1函数y的定义域是()Ax|0x2Bx|0x1或1x2Cx|0x2Dx|0x1或1x2解析:要使函数有意义只需解得0x1或1x2,所以函数y的定义域为x|0x1或1x2答案:D2函数f(x)axloga(x1)在0,1上的最大值和最小值之和为a,则a的值为()A.B.C2 D4解析:当a1时,aloga21a,loga21,所以a,与a1矛盾;当0a1时,1aloga2a,loga21,所以a.答案:B3(2016昆明统考)下列函数中,在其定义域内既是偶函数又在(,0)上单调递增的函数是()Af(x)x2 Bf(x)2|x|Cf(x)log2

18、Df(x)sin x解析:函数f(x)x2是偶函数,但在区间(,0)上单调递减,不合题意;函数f(x)2|x|是偶函数,但在区间(,0)上单调递减,不合题意;函数f(x)log2是偶函数,且在区间(,0)上单调递增,符合题意;函数f(x)sin x是奇函数,不合题意答案:C4已知函数f(x)是定义在区间0,)上的函数,且在该区间上单调递增,则满足f(2x1)f()的x的取值范围是()A(,) B,)C(,) D,)解析:由已知,得,即x.答案:D5设偶函数f(x)的定义域为R,当x0,)时f(x)是增函数,则f(2),f(),f(3)的大小关系是()Af()f(3)f(2)Bf()f(2)f(

19、3)Cf()f(3)f(2)Df()f(2)f(3)解析:因为32,且当x0,)时f(x)是增函数,所以f()f(3)f(2)又函数f(x)为R上的偶函数,所以f(3)f(3),f(2)f(2),故f()f(3)f(2)答案:A二、填空题7若函数ylog2(ax22x1)的值域为R,则a的取值范围为_解析:设f(x)ax22x1,由题意知,f(x)取遍所有的正实数当a0时,f(x)2x1符合条件;当a0时,则,解得0a1.所以0a1.答案:0,18已知f(x)是定义在R上的偶函数,在区间0,)上为增函数,且f()0,则不等式f(x)0的解集为_解析:由已知f(x)在R上为偶函数,且f()0,f

20、(x)0等价于f(|x|)f(),又f(x)在0,)上为增函数,|x|,即x或x.答案:x|x或x9已知函数f(x),g(x)分别是定义在R上的偶函数与奇函数,且g(x)f(x1),则f(2 015)的值为_解析:g(x)f(x1),由f(x),g(x)分别是偶函数与奇函数,得g(x)f(x1),f(x1)f(x1),即f(x2)f(x),f(x4)f(x),故函数f(x)是以4为周期的周期函数,则f(2 015)f(50441)f(1)g(0)0.答案:0三、解答题10已知函数f(x)是奇函数(1)求实数m的值;(2)若函数f(x)在区间1,a2上单调递增,求实数a的取值范围解:(1)设x0

21、,则x0,所以f(x)(x)22(x)x22x.又f(x)为奇函数,所以f(x)f(x),于是x0时,f(x)x22xx2mx,所以m2.(2)由(1)知f(x)在1,1上是增函数,要使f(x)在1,a2上单调递增结合f(x)的图象知所以1a3,故实数a的取值范围是(1,311(2017广州一模)已知函数f(x)|xa1|x2a|.(1)若f(1)3,求实数a的取值范围;(2)若a1,xR,求证:f(x)2.解:(1)因为f(1)3,所以|a|12a|3,当a0时,得a(12a)3,解得a,所以a0,当0a时,得a(12a)3,解得a2,所以0a.当a时,得a(12a)3,解得a,所以a,综上所述,实数a的取值范围为.(2)因为a1,xR,所以f(x)|xa1|x2a|(xa1)(x2a)|3a1|3a12.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服