收藏 分销(赏)

2022高考数学一轮复习-第4章-三角函数、解三角形-第3讲-三角函数的图象与性质试题1.docx

上传人:快乐****生活 文档编号:2163808 上传时间:2024-05-21 格式:DOCX 页数:8 大小:134.05KB
下载 相关 举报
2022高考数学一轮复习-第4章-三角函数、解三角形-第3讲-三角函数的图象与性质试题1.docx_第1页
第1页 / 共8页
2022高考数学一轮复习-第4章-三角函数、解三角形-第3讲-三角函数的图象与性质试题1.docx_第2页
第2页 / 共8页
2022高考数学一轮复习-第4章-三角函数、解三角形-第3讲-三角函数的图象与性质试题1.docx_第3页
第3页 / 共8页
2022高考数学一轮复习-第4章-三角函数、解三角形-第3讲-三角函数的图象与性质试题1.docx_第4页
第4页 / 共8页
2022高考数学一轮复习-第4章-三角函数、解三角形-第3讲-三角函数的图象与性质试题1.docx_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、2022高考数学一轮复习 第4章 三角函数、解三角形 第3讲 三角函数的图象与性质试题12022高考数学一轮复习 第4章 三角函数、解三角形 第3讲 三角函数的图象与性质试题1年级:姓名:第 8 页 共 8 页第四章三角函数、解三角形第三讲三角函数的图象与性质练好题考点自测1.2021惠州市调考将函数y=sin x的图象向左平移2个单位长度,得到函数y=f(x)的图象,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的最小正周期为C.y=f(x)的图象关于直线x=2对称D.y=f(x)的图象关于点(-2,0)对称2.2019全国卷,8,5分若x1=4,x2=34是函数f(x)=s

2、in x(0)两个相邻的极值点,则=()A.2B.32C.1D.123.2019全国卷,9,5分理下列函数中,以2为周期且在区间(4,2)上单调递增的是()A.f(x)=|cos 2x|B.f(x)=|sin 2x|C.f(x)=cos|x|D.f(x)=sin|x|4.2020全国卷,7,5分理设函数f(x)=cos(x+6)在-,的图象大致如图4-3-1,则f(x)的最小正周期为()A.109B.76C.43D.325.2020江苏,10,5分将函数y=3sin(2x+4)的图象向右平移6个单位长度,则平移后的图象中与y轴最近的对称轴的方程是.6.2020全国卷,16,5分理关于函数f(x

3、)=sin x+1sinx有如下四个命题:f(x)的图象关于y轴对称;f(x)的图象关于原点对称;f(x)的图象关于直线x=2对称;f(x)的最小值为2.其中所有真命题的序号是.7.2018北京,11,5分理设函数f(x)=cos(x-6)(0).若f(x)f(4)对任意的实数x都成立,则的最小值为.拓展变式1.2021河北六校第一次联考函数f(x)=sin(x+)(0,|2)的部分图象如图4-3-3所示,若将函数f(x)的图象沿x轴向右平移b(0b0,|0,|0,0,|0),xR.若f(x)在区间(,2)内没有零点,则的取值范围是()A.(0,18B.(0,1458,1)C.(0,58D.(

4、0,1814,588.(1)已知函数f(x)=sin(x+3)(0),若f(x)在0,23上恰有两个零点,则的取值范围是()A.(1,52)B.1,52)C.(52,4)D.52,4)(2)2020大连6月二模已知函数f(x)=2sin(x+)+1(0,|2), 其图象与直线y=-1相邻两个交点的距离为,若f(x)1对任意的x(-12,3)恒成立,则的取值范围是()A.(6,3)B.12,3C.12,2D.6,3答案第三讲三角函数的图象与性质1.D将函数y=sin x的图象向左平移2个单位长度,得到函数y=f(x)=sin(x+2)=cos x的图象,所以y=f(x)是偶函数,排除A;y=f(

5、x)的最小正周期T=21=2,排除B;y=f(x)的图象关于直线x=k(kZ)对称,排除C.故选D.2.A依题意得函数f(x)的最小正周期T=2=2(34-4)=,解得=2,故选A.3.A对于A,作出y=|cos 2x|的图象如图D 4-3-1所示,由图象知,其周期为2,在区间(4,2)上单调递增,A正确;图D 4-3-1对于B,作出y=|sin 2x|的图象如图D 4-3-2所示,由图象知,其周期为2,在区间(4,2)上单调递减,B错误;图D 4-3-2对于C,y=cos|x|=cos x,周期为2,C错误;对于D,作出y=sin|x|的图象如图D 4-3-3所示,由图象知,其不是周期函数,

6、D错误.故选A.4.C解法一由题图知, f(-49)=0,-49+6=2+k(kZ),解得=-3+9k4(kZ).设f(x)的最小正周期为T,易知T22T,2|24|,1|2,由=-3+9k4(kZ)知当且仅当k=-1时,符合题意,此时=32,T=2=43.故选C.解法二由题图知,f(-49)=0且f(-)0,-49+6=-2(0),解得=32,f(x)的最小正周期T=2=43.故选C.5.x=-524将函数y=3sin(2x+4)的图象向右平移6个单位长度,得到y=3sin2(x-6)+4=3sin(2x-12)的图象,由2x-12=2+k,kZ,得对称轴方程为x=724+12k,kZ,其中

7、与y轴最近的对称轴的方程为x=-524.6.由题意知f(x)的定义域为x|xk,kZ,且关于原点对称.又f(-x)=sin(-x)+1sin(-x)=-(sin x+1sinx)=-f(x),所以函数f(x)为奇函数,其图象关于原点对称,所以为假命题,为真命题.因为f(2-x)=sin(2-x)+1sin(2-x)=cos x+1cosx,f(2+x)=sin(2+x)+1sin(2+x)=cos x+1cosx,所以f(2+x)=f(2-x),所以函数f(x)的图象关于直线x=2对称,为真命题.当sin x0时,f(x)0,min=23.1.38根据函数的图象可得14T=38-8=4,所以T

8、=,所以2=,所以=2,又f(8)=1,所以sin(28+)=1,所以+4=2k+2,kZ,所以=2k+4,kZ,因为|2,所以=4,所以f(x)=sin(2x+4).将f(x)的图象沿x轴向右平移b个单位长度得到函数y=sin2(x-b)+4=sin(2x+4-2b)的图象,因为函数y=sin(2x+4-2b)是偶函数,所以4-2b=k+2,kZ,所以b=-k2-8,kZ,因为0b0得12cos x1,即2k-3x2k+3,kZ,由f(x)0得-1cos x12,即2k-53x2k-3,kZ,所以当x=2k-3,kZ时,f(x)取得最小值,且f(x)min=f(2k-3)=2sin(2k-3

9、)+sin 2(2k-3)=-332.4.C由题意知,|f(x)|2,且|f(x1)-f(x2)|=4,不妨设f(x1),f(x2)分别为函数f(x)的最大值、最小值.因为|x1-x2|min=32,所以12T=122=32,得=23.又f(2)=0,所以sin(232+)=0,又|0,0,|2),由题意知,B=7 000,A+B=9 000,故A=2 000.可作出函数简图如图D 4-3-5所示.T=2(9-3)=12,=2T=6.则f(x)=2 000sin(6x+)+7 000,则有63+=k+2,kZ,=k,kZ,又|2,=0,故f(x)=2 000sin6x+7 000(1x12,x

10、N*),f(7)=2 000sin76+7 000=6 000.故7月份的出厂价格为6 000元.7.Df(x)=12(1-cos x)+12sin x-12=12sin x-12cos x=22sin(x-4).解法一因为x(,2),所以x-4(-4,2-4).因为f(x)在(,2)内无零点,故T2,即01,且k-4,2-4k+(kZ).当k=-1时,解得(0,18;当k=0时,解得14,58,当k-1或k1时,不满足题意,故(0,1814,58.故选D.解法二当=12时, f(x)=22sin(12x-4),x(,2)时,f(x)(12,22,无零点,排除A,B;当=316时,f(x)=2

11、2sin(316x-4),x(,2)时,当x=43时,f(x)=0,所以f(x)有零点,排除C.选D.8.(1)D当0x23时,3x+323+3.若f(x)在0,23上恰有两个零点,则223+33,解得520,|2),其图象与直线y=-1相邻两个交点的距离为,故函数的最小正周期为T=2=,解得=2.所以f(x)=2sin(2x+)+1.由题意,f(x)1对任意的x(-12,3)恒成立,即当x(-12,3)时,sin(2x+)0恒成立.令t=2x+,因为x(-12,3),所以t(-6,+23).故要使sin t0恒成立,只需-62k,+232k+(kZ),解得2k+62k+3(kZ).显然,当k=0时,63,故选D.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服