1、勾股定理勾股定理综合测试卷综合测试卷(考试时间:90 分钟 满分:100 分)一、选择题一、选择题(每题每题 3 分,共分,共 24 分分)1.有六根细木棒,它们的长度分别是 2,4,6,8,10,12(单位:cm).若从中取出三根,首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为()A.2,4,8 B.4,8,10 C.6,8,10 D.8,10,122.若等腰三角形底边上的高为 8,周长为 32,则三角形的面积为()A.56 B.48 C.40 D.323.在中,已知.若边上的高,则边的长为()ABC17,10ABACBC8AD BC A.21 B.15 C.6 或 9 D.9 或
2、 214.如图,每个小正方形的边长为 1,若是小正方形的顶点,则的度数为(),A B CABC A.90 B.60 C.45 D.305.如图,一架云梯长 25 m,斜靠在一面墙上,梯子底端离墙 7m.如果梯子的顶端下滑 4 m,那么梯子的底部在水平方向上滑动了()A.4 m B.6m C.8 m D.10 m6.如图,在中,点在上,ABCACBC90ACBDBC3BD 1DC 是上的动点,则的最小值为()PABPCPD A.4 B.5 C.6 D.77.如图,在长方形中,为的中点,将沿折叠,ABCD4,6,ABBCEBCABEAE使点落在长方形内点处,连接,则的长为()BFCFCF8.如图,
3、分别以直角三角形三边为边向外作等边三角形,面积分别为;如图,123,S SS分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为.其中,则为()456,SS S125616,45,11,14SSSS34SS A.86 B.64 C.54 D.48二、填空题二、填空题(每题每题 2 分,共分,共 20 分分)9.如果三角形三边长分别为 3,4,5,那么最长边上的中线长为 .10.已知两条线段的长分别为 15 cm 和 8 cm,则当第三条线段的长取整数 cm 时,这三条线段能组成一个直角三角形.11.若一个三角形的三边长之比为 5:12:13,且周长为 60 cm,则它
4、的面积为 cm2.12.如图,长为 12 cm 的弹性皮筋拉直放置在一轴上,固定两端和,然后把中点向ABC上拉升 8 cm 至点,则弹性皮筋被拉长了 m.D13.如图,在四边形中,.若,则ABCD:2:2:3:1AB BC CD DA 90ABC .DAB14.如图,在中,.若中线,则的面积为 .ABC5,3ABAC2AD ABC15.如图,在四边形中,将绕点顺时针旋转 60 后,点ABCD30ABCDCBC的对应点恰好与点重合,得到,若,则 .DAACE3,4ABBCBD 16.在四边形中,则 .ABCD90ABC4,2,6ABBCCDADBCD17.如图是一个三级台阶,它的每一级的长、宽、
5、高分别为 20 dm,3 dm,2 dm,和A是这个台阶两个相对的端点,点处有一点蚂蚁,想到点去吃可口的食物,则蚂蚁BAB沿着台阶面爬到点的最短路程是 .B18.如图,一个圆柱形容器的高为 1.2 m,底面周长为 1m.在容器内壁离容器底部 0.3 m 的点 处有一只蚊子,此时一只壁虎正好在容器外壁离容器上沿 0.3 m 与蚊子相对的点B处,则壁虎捕捉蚊子的最短距离为 m(容器厚度忽略不计).A三、解答题三、解答题(共共 56 分分)19.(6 分)如图,在中,为边上一点,且到两点ABC90C,ACBC DBC,A B 的距离相等.(1)利用尺规,作出点的位置(不写作法,保留作图痕迹);D (
6、2)连接,若,求的长.AD5,3ABACCD20.(6 分)如图,在中,是的中点,是的中点,过Rt ACB90ACBDABECD点作交的延长线于点.C/CFABAEF(1)求证:;ADEFCE(2)若,求的长.120DCF2DE BC21.(6 分)如图,等腰三角形的底边cm,是腰上一点,且ABC20BC DABcm,cm,求的周长.16CD 12BD ABC22.(6 分)如图,在直角三角形纸片中,折叠ABC90C6,8ACBC的一角,使点与点重合,展开得折痕,求的长.ABCBADEBD23.(8 分)如图,cm,cm,cm,是直90ABC6AB 24AD 34BCCDC线 上一动点,请你探
7、索:当点离点多远时,是一个以为斜边的直角三角lCBACDCD形?24.(8 分)如图,在一棵树离地 10 m 的处有两只猴子,其中一只猴子爬下树走到离树CDB20 m 处的池塘处,另一只爬到树顶后直接跃到处.距离以直线计算,如果两只猴ADA子所经过的距离相等,请问:这棵树有多高?25.(8 分)如图,将(其中)绕其锐角顶点逆时针旋转Rt ABC,ABc ACb BCaA90 得到,连接,延长相交于点,则有,且四边Rt ADEBE,DE BCF90BFE形是一个正方形.ACFD (1)判断的形状,并证明你的结论;ABE (2)用含的代数式表示四边形的面积;bABFE (3)求证:.222abc2
8、6.(8 分)如图,长方体的长为 15 cm,宽为 10 cm,高为 20 cm,点到点的距离是 5 BCcm,自点至点的长方体表面的连线距离最短是多少?AB参考答案参考答案1-8 CBDCCBDC9.5210.1711.12012.813.13514.615.516.13517.25dm18.1.319.(1)作线段的垂直平分线,交于点,即为所求;ABBCD (2)7820.(1)BAFAFC (2)4BC 21.三角形的周长为cm.160322.25423.8cm24.树高 15m25.(1)等腰直角三角形;(2)面积为;2b (3)四边形面积为,即2211()()22cba bab222abc26.最短是 25cm。