1、2023年人教版七7年级下册数学期末复习题(附答案)一、选择题19的算术平方根是()A-3B3CD2北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的在下面如图的四个图中,能由如图经过平移得到的是( )ABCD3若点在第四象限,则点在( )A第一象限B第二象限C第三象限D第四象限4下列给出四个命题:如果两个角相等,那么它们是对顶角;如果两个角互为邻补角,那么它们的平分线互相垂直;如果两条直线垂直于同一条直线,那么这两条直线平行;如果两条直线平行于同一条直线,那么这两条直线平行其中为假命题的是()ABCD5如图,C为的边OA上一点,过点C作交的平分线OE于点F,作交BO的延长线于点H,若,现
2、有以下结论:;结论正确的个数是( )A1个B2个C3个D4个6有下列说法:(1)-6是36的一个平方根;(2)16的平方根是4;(3);(4)是无理数;(5)当时,一定有是正数,其中正确的说法有( )A1个B2个C3个D4个7珠江流域某江段江水流向经过B、C、D三点,拐弯后与原来方向相同如图,若ABC120,BCD80,则CDE等于()A20B40C60D808如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(4,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以6个单位秒匀速运动,则两个物体运动后的第2021次
3、相遇地点的坐标是( )A(0,2)B(4,0)C(0,2)D(4,0)九、填空题9_十、填空题10已知点,点关于x轴对称,则的值是_十一、填空题11如图,C在直线BE上,ABC与ACE的角平分线交于点,A=m,若再作、的平分线,交于点;再作、的平分线,交于点;依次类推,则为_.十二、填空题12如图,将一块三角板的直角顶点放在直尺的一边上,当2=54时,1=_十三、填空题13如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C处,折痕为EF,若ABE=30,则EFC的度数为_十四、填空题14规定:x表示不大于x的最大整数,(x)表示不小于x的最小整数,x)表示最接近x的整数(xn+0.
4、5,n为整数),例如:2.3=2,(2.3)=3,2.3)=2当1x1时,化简x+(x)+x)的结果是_十五、填空题15在平面直角坐标系中,若在轴上,则线段长度为_十六、填空题16在平面直角坐标系中,对于点我们把叫做点P的伴随点,已知的伴随点为,点的伴随点为,点的伴随点为,这样依次得到,若点的坐标为,则点的坐标为_十七、解答题17计算: (1)3-(-5)+(-6) (2)十八、解答题18已知:,求下列各式的值:(1)的值;(2)的值十九、解答题19如图,直线,被直线,所截,直线分别交和于点,点在直线上,求证:请在下列括号中填上理由:证明:因为(已知),所以(_)又因为(已知),所以,即,所以
5、_(同位角相等,两直线平行),所以(_)二十、解答题20如图,三角形的顶点都在格点上,将三角形向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:_,_,_;(2)画出平移后三角形;(3)求三角形的面积二十一、解答题21数学活动课上,张老师说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用表示它的小数部分”张老师说:“晶晶同学的说法是正确的,因为的整数部分是,将这个数减去其整数部分,差就是小数部分,”请你解答:已知,其中是一个整数,且,请你求出
6、的值二十二、解答题22有一块正方形钢板,面积为16平方米(1)求正方形钢板的边长(2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由(参考数据:,)二十三、解答题23已知:如图(1)直线AB、CD被直线MN所截,12(1)求证:AB/CD;(2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分BPE,QF平分EQD,则PEQ和PFQ之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P点作PH/EQ交CD于点H,连接PQ,若PQ平
7、分EPH,QPF:EQF1:5,求PHQ的度数二十四、解答题24如图,平分,设为,点E是射线上的一个动点(1)若时,且,求的度数;(2)若点E运动到上方,且满足,求的值;(3)若,求的度数(用含n和的代数式表示)二十五、解答题25如图,平分,B=450,C=730 (1) 求的度数;(2) 如图,若把“”变成“点F在DA的延长线上,”,其它条件不变,求 的度数;(3) 如图,若把“”变成“平分”,其它条件不变,的大小是否变化,并请说明理由【参考答案】一、选择题1B解析:B【分析】根据算术平方根的概念可直接进行求解【详解】解:,9的算术平方根是3;故选B【点睛】本题主要考查算术平方根,熟练掌握求
8、一个数的算术平方根是解题的关键2C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A是旋转180后图形,故选项A不合题意;B是解析:C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A是旋转180后图形,故选项A不合题意;B是轴对称图形,故选项B不合题意;C选项的图案可以通过平移得到故选项C符合题意;D是轴对称图形,故选项D不符合题意故选:C【点睛】本题考查了图形的平移,掌握平移的定义及性质是解题的关键3A【分析】首先得出第四象
9、限点的坐标性质,进而得出Q点的位置【详解】解:点P(a,b)在第四象限,a0,b0,-b0,点Q(-b,a)在第一象限故选:A【点睛】此题主要考查了点的坐标,正确把握各象限点的坐标特点是解题关键4C【分析】根据两个相等的角不一定是对顶角对进行判定,根据邻补角与角平分线的性质对进行判断,根据在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行对进行判断,根据平行线的判定对进行判断【详解】解:如果两个角相等,那么它们不一定是对顶角,选项说法错误,符合题意;如果两个角互为邻补角,那么它们的平分线互相垂直,选项说法正确,不符合题意;在同一平面内,如果两条直线垂直于同一条直线,那么这两条直线平行,
10、选项说法错误,符合题意;如果两条直线平行于同一条直线,那么这两条直线平行,选项说法正确,不符合题意;故选:C【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言任何一个命题非真即假要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可5D【分析】根据平行线的性质可得,结合角平分线的定义可判断;再由平角的定义可判断;由平行线的性质可判断;由余角及补角的定义可判断【详解】解:,平分,故正确;,故正确;,故正确;,故正确正确为,故选:D【点睛】本题主要考查平行线的性质,角平分线的定义,垂直的定义,灵活运用平行线的性质是解题的关键6B【分析】根据平方根与
11、立方根的定义与性质逐个判断即可【详解】(1)是36的一个平方根,则此说法正确;(2)16的平方根是,则此说法错误;(3),则此说法正确;(4),4是有理数,则此说法错误;(5)当时,无意义,则此说法错误;综上,正确的说法有2个,故选:B【点睛】本题考查了平方根与立方根,熟练掌握平方根与立方根的定义与性质是解题关键7A【分析】过点C作CFAB,则CFDE,利用平行线的性质和角的等量代换求解即可【详解】解:由题意得,ABDE,过点C作CFAB,则CFDE,BCF+ABC180,BCF60,DCF20,CDEDCF20故选:A【点睛】本题主要考查了平行线的性质,合理作出辅助线是解题的关键8A【分析】
12、利用行程问题中的相遇问题,由于矩形的边长为8和4,物体乙是物体甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的边长为8和4,因为物体乙是物体甲的速度的3倍解析:A【分析】利用行程问题中的相遇问题,由于矩形的边长为8和4,物体乙是物体甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的边长为8和4,因为物体乙是物体甲的速度的3倍,时间相同,物体甲与物体乙的路程比为1:3,由题意知:第一次相遇物体甲与物体乙行的路程和为241,物体甲行的路程为246,物体乙行的路程为2418,在DE边相遇;第二次相遇物体甲与物体乙行的路程和为242,物体甲行的路程为242
13、12,物体乙行的路程为24236,在DC边相遇;第三次相遇物体甲与物体乙行的路程和为243,物体甲行的路程为24318,物体乙行的路程为24354,在BC边相遇;第四次相遇物体甲与物体乙行的路程和为244,物体甲行的路程为24424,物体乙行的路程为24472,在A点相遇;此时甲乙回到原出发点,则每相遇四次,两点回到出发点,202145051,故两个物体运动后的第2020次相遇地点的是点A,即物体甲行的路程为2416,物体乙行的路程为24118时,达到第2021次相遇,此时相遇点的坐标为:(0,2),故选:A【点睛】本题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算
14、发现规律就可以解决问题九、填空题96【分析】根据算术平方根、有理数的乘方运算即可得【详解】故答案为:6【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键解析:6【分析】根据算术平方根、有理数的乘方运算即可得【详解】故答案为:6【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键十、填空题10-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可【详解】解:点,点关于x轴对称,;解得:,故答案为-6【点睛】本题考查平面直解析:-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可【详
15、解】解:点,点关于x轴对称,;解得:,故答案为-6【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数十一、填空题11【分析】根据角平分线定义与三角形的外角等于与其不相邻两个内角和求出规律,利用规律解题即可【详解】当A=m时,=,以此类推,=,=,=故答案为【点睛】本题主要考查了角平分线性质解析:【分析】根据角平分线定义与三角形的外角等于与其不相邻两个内角和求出规律,利用规律解题即可【详解】当A=m时,=,以此类推,=,=,=故答案为【点睛】本题主要考查了角平分线性质与三角形外角和定理,根据题意以及相关性质找到规律解题是关键十
16、二、填空题1236【分析】如图,根据平行线的性质可得3=2,然后根据平角的定义解答即可【详解】解:如图,三角尺的两边ab,3=2=54,1=180903=36故解析:36【分析】如图,根据平行线的性质可得3=2,然后根据平角的定义解答即可【详解】解:如图,三角尺的两边ab,3=2=54,1=180903=36故答案为:36【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键十三、填空题13120【分析】由折叠的性质知:EBC、BCF都是直角,因此BECF,那么EFC和BEF互补,欲求EFC的度数,需先求出BEF的度数;根据折叠的性质知B
17、EF=DEF,而解析:120【分析】由折叠的性质知:EBC、BCF都是直角,因此BECF,那么EFC和BEF互补,欲求EFC的度数,需先求出BEF的度数;根据折叠的性质知BEF=DEF,而AEB的度数可在RtABE中求得,由此可求出BEF的度数,即可得解【详解】解:RtABE中,ABE=30,AEB=60;由折叠的性质知:BEF=DEF;而BED=180-AEB=120,BEF=60;由折叠的性质知:EBC=D=BCF=C=90,BECF,EFC=180-BEF=120故答案为:120【点睛】本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴
18、对称的性质,折叠前后图形的形状和大小不变十四、填空题142或1或0或1或2【分析】有三种情况:当时,x-1,(x)0,x)=-1或0,x+(x)+x)-2或-1;当时,x0,(x)0,x)=0,x解析:2或1或0或1或2【分析】有三种情况:当时,x-1,(x)0,x)=-1或0,x+(x)+x)-2或-1;当时,x0,(x)0,x)=0,x+(x)+x)0;当时,x0,(x)1,x)=0或1,x+(x)+x)1或2;综上所述,化简x+(x)+x)的结果是-2或1或0或1或2.故答案为-2或1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!十
19、五、填空题155【分析】先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案【详解】在轴上,横坐标为0,即,解得:,故,线段长度为,故答案为:5【点睛】本题只要考查解析:5【分析】先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案【详解】在轴上,横坐标为0,即,解得:,故,线段长度为,故答案为:5【点睛】本题只要考查了再y轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数十六、填空题16【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可【详解】解:A
20、1的坐标为(3,1),A解析:【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可【详解】解:A1的坐标为(3,1),A2(0,4),A3(3,1),A4(0,2),A5(3,1),依此类推,每4个点为一个循环组依次循环,202145051,的坐标与A1的坐标相同,为(3,1)故答案是:(3,1)【点睛】考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键十七、解答题17(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根
21、,再算乘法,最后进行加减计算即可得到结果【详解】(1)解:3-(-5)+(-6) =3+5-6解析:(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果【详解】(1)解:3-(-5)+(-6) =3+5-6=2(2)解:(-1)2- =1-4 =1-2=-1【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键十八、解答题18(1)5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1),+得:,即,;(2)解析:(1)5;(2)1
22、3【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1),+得:,即,;(2),=13【点睛】本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键十九、解答题19两直线平行,同位角相等;两直线平行,同旁内角互补【分析】要证明与互补,需证明,可通过同位角与(或与相等来实现【详解】证明:因为(已知),所以 两直线平行,同位角相等)又因为(已知解析:两直线平行,同位角相等;两直线平行,同旁内角互补【分析】要证明与互补,需证明,可通过同位角与(或与相等来实现【详解】证明:因为(已知),所以 两直线
23、平行,同位角相等)又因为(已知),所以,即,所以(同位角相等,两直线平行),所以(两直线平行,同旁内角互补故答案为:两直线平行,同位角相等;两直线平行,同旁内角互补【点睛】本题考查了平行线的性质和判定,解题的关键是掌握平行线的性质和判定二十、解答题20(1),;(2)见解析;(3)【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案;(3)将ABC补全为长方形解析:(1),;(2)见解析;(3)【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答
24、案;(3)将ABC补全为长方形,然后利用作差法求解即可【详解】解:(1)平移后的三个顶点坐标分别为:,;(2)画出平移后三角形;(3)【点睛】本题考查了平移作图的知识,解答本题的关键是根据平移的特点准确作出图形,第三问求解不规则图形面积的时候可以先补全,再减去二十一、解答题2126【分析】先估算出的范围,再求出x,y的值,即可解答【详解】解:,的整数部分是1,小数部分是的整数部分是9,小数部分是,x=9,y=,=39+(-)2019=27+(解析:26【分析】先估算出的范围,再求出x,y的值,即可解答【详解】解:,的整数部分是1,小数部分是的整数部分是9,小数部分是,x=9,y=,=39+(-
25、)2019=27+(-1)2019=27-1=26【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出的范围二十二、解答题22(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解解析:(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解:(1)正方形的面积是16平方米,正方形钢板的边长是米;(2)设长方形的长宽分别为米、米,则,
26、长方形长是米,而正方形的边长为4米,所以李师傅不能办到.【点睛】本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键.二十三、解答题23(1)见解析;(2)PEQ+2PFQ360;(3)30【分析】(1)首先证明13,易证得AB/CD;(2)如图2中,PEQ+2PFQ360作EH/AB理由平行线解析:(1)见解析;(2)PEQ+2PFQ360;(3)30【分析】(1)首先证明13,易证得AB/CD;(2)如图2中,PEQ+2PFQ360作EH/AB理由平行线的性质即可证明;(3)如图3中,设QPFy,PHQxEPQz,则EQFFQH5y,想办法构建方程即可解
27、决问题;【详解】(1)如图1中,23,12,13,AB/CD(2)结论:如图2中,PEQ+2PFQ360理由:作EH/ABAB/CD,EH/AB,EH/CD,12,34,2+31+4,PEQ1+4,同法可证:PFQBPF+FQD,BPE2BPF,EQD2FQD,1+BPE180,4+EQD180,1+4+EQD+BPE2180,即PEQ+2(FQD+BPF)=360,PEQ+2PFQ360(3)如图3中,设QPFy,PHQxEPQz,则EQFFQH5y,EQ/PH,EQCPHQx,x+10y180,AB/CD,BPHPHQx,PF平分BPE,EPQ+FPQFPH+BPH,FPHy+zx,PQ平
28、分EPH,Zy+y+zx,x2y,12y180,y15,x30,PHQ30【点睛】本题考查了平行线的判定与性质,角平分线的定义等知识(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键二十四、解答题24(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先解析:(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数
29、;(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;(3)根据题意可分两种情况,若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论;若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论【详解】解:(1),平分,又,;(2)根据题意画图,如图1所示,又平分,;(3)如图2所示,平分,又,解得;如图3所示,平分,又,解得综上的度数为或【点睛】本题主要考查平行线的
30、性质和角平分线的性质,两直线平行,同位角相等两直线平行,同旁内角互补两直线平行,内错角相等合理应用平行线的性质是解决本题的关键二十五、解答题25(1)DAE =14;(2)DFE =14;(3)DAE 的大小不变,DAE =14,证明详见解析.【分析】(1)求出ADE的度数,利用DAE=90-ADE即可求出DAE解析:(1)DAE =14;(2)DFE =14;(3)DAE 的大小不变,DAE =14,证明详见解析.【分析】(1)求出ADE的度数,利用DAE=90-ADE即可求出DAE的度数(2)求出ADE的度数,利用DFE=90-ADE即可求出DAE的度数(3)利用AE平分BEC,AD平分B
31、AC,求出DFE=15即是最好的证明【详解】(1)B=45,C=73,BAC=62,AD平分BAC,BAD=CAD=31,ADE=B+BAD=45+31=76,AEBC,AEB=90,DAE=90-ADE=14(2)同(1),可得,ADE=76,FEBC,FEB=90,DFE=90-ADE=14(3)的大小不变.=14理由: AD平分 BAC,AE平分BECBAC=2BAD,BEC=2AEB BAC+B+BEC+C =3602BAD+2AEB=360-B-C=242BAD+AEB=121 ADE=B+BADADE=45+BADDAE=180-AEB-ADE=180-AEB-45-BAD=135-(AEB+BAD)=135-121=14【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键.