收藏 分销(赏)

2023年人教版七7年级下册数学期末解答题复习题附答案.doc

上传人:a199****6536 文档编号:1773716 上传时间:2024-05-09 格式:DOC 页数:36 大小:935.54KB
下载 相关 举报
2023年人教版七7年级下册数学期末解答题复习题附答案.doc_第1页
第1页 / 共36页
2023年人教版七7年级下册数学期末解答题复习题附答案.doc_第2页
第2页 / 共36页
2023年人教版七7年级下册数学期末解答题复习题附答案.doc_第3页
第3页 / 共36页
2023年人教版七7年级下册数学期末解答题复习题附答案.doc_第4页
第4页 / 共36页
2023年人教版七7年级下册数学期末解答题复习题附答案.doc_第5页
第5页 / 共36页
点击查看更多>>
资源描述

1、2023年人教版七7年级下册数学期末解答题复习题附答案一、解答题1已知在的正方形网格中,每个小正方形的边长为1(1)计算图中正方形的面积与边长(2)利用图中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和2已知足球场的形状是一个长方形,而国际标准球场的长度和宽度(单位:米)的取值范围分别是,若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由3如图,用两个边长为15的小正方形拼成一个大的正方形,(1)求大正方形的边长?(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,

2、且面积为720cm2?4某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由5求下图的方格中阴影部分正方形面积与边长二、解答题6如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点(1)若时,则_;(2)试求出的度数(用含的代数式表示);(3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数(用

3、含的代数式表示)7如图,EBF50,点C是EBF的边BF上一点动点A从点B出发在EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线ADBC(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分EAC?(2)假设存在AD平分EAC,在此情形下,你能猜想B和ACB之间有何数量关系?并请说明理由;(3)当ACBC时,直接写出BAC的度数和此时AD与AC之间的位置关系8阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到BED求证:BEDB+D(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整证明

4、:过点E作EFAB,则有BEF ABCD, ,FED BEDBEF+FEDB+D(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分ABC,DE平分ADC,且BE,DE所在的直线交于点E如图1,当点B在点A的左侧时,若ABC60,ADC70,求BED的度数;如图2,当点B在点A的右侧时,设ABC,ADC,请你求出BED的度数(用含有,的式子表示)9综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互

5、相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础已知:AMCN,点B为平面内一点,ABBC于B问题解决:(1)如图1,直接写出A和C之间的数量关系;(2)如图2,过点B作BDAM于点D,求证:ABDC;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分DBC,BE平分ABD,若FCB+NCF180,BFC3DBE,则EBC 10如图1,把一块含30的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上(1)根据图1填空:1 ,2 ;(2)现把三角板绕B点逆时针旋转n如图2,当n25,且点C恰好落在DG边上时,求1、2的度数

6、;当0n180时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由三、解答题11已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且(1)将直角如图1位置摆放,如果,则_;(2)将直角如图2位置摆放,N为上一点,请写出与之间的等量关系,并说明理由; (3)将直角如图3位置摆放,若,延长交直线b于点Q,点P是射线上一动点,探究与的数量关系,请直接写出结论12如图1,点O在上,射线交于点C,已知m,n满足:(1)试说明/的理由;(2)如图2,平分,平分,直线、交于点E,则_;(3)若

7、将绕点O逆时针旋转,其余条件都不变,在旋转过程中,的度数是否发生变化?请说明你的结论13问题情境:如图1,ABCD,PAB=130,PCD=120,求APC的度数小明的思路是:如图2,过P作PEAB,通过平行线性质来求APC(1)按小明的思路,易求得APC的度数为 度;(2)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=,BCP=试判断CPD、之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、间的数量关系14已知:如图1,点,分别为,上一点(1)在,之间有一点(点不在线段上)

8、,连接,探究,之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明(2)如图2,在,之两点,连接,请选择一个图形写出,存在的数量关系(不需证明)15综合与探究综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,且,三角形是直角三角形,操作发现:(1)如图1,求的度数;(2)如图2创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由四、解答题16(1)如图1,B

9、AD的平分线AE与BCD的平分线CE交于点E,ABCD,ADC=50,ABC=40,求AEC的度数;(2)如图2,BAD的平分线AE与BCD的平分线CE交于点E,ADC=,ABC=,求AEC的度数;(3)如图3,PQMN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由17如图,将一副直角三角板放在同一条直线AB上,其中ONM30,OCD45(1)将图中的三角板OMN沿BA的方向平移至图的位置,MN与CD相交于点E,求CEN的度数;(2)将图中的三角板OMN绕点O按逆时针方向旋转,使BON30,如图,M

10、N与CD相交于点E,求CEN的度数;(3)将图中的三角板OMN绕点O按每秒30的速度按逆时针方向旋转一周,在旋转的过程中,在第_秒时,直线MN恰好与直线CD垂直(直接写出结果)18在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点.(1)如图1,点在线段上运动时,平分.若,则_;若,则_;试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由.19(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为1,反射光线 OB

11、 与水平镜面夹角为2,则1=2 .(现象解释)如图 2,有两块平面镜 OM,ON,且 OMON,入射光线 AB 经过两次反射,得到反射光线 CD.求证 ABCD.(尝试探究)如图 3,有两块平面镜 OM,ON,且MON =55 ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于点 E,求BEC 的大小.(深入思考)如图 4,有两块平面镜 OM,ON,且MON = ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,BED= , 与 之间满足的等量关系是 .(直接写出结果)20如图,已知直线ab,ABC100,BD平分A

12、BC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P问1的度数与EPB的度数又怎样的关系?(特殊化)(1)当140,交点P在直线a、直线b之间,求EPB的度数;(2)当170,求EPB的度数;(一般化)(3)当1n,求EPB的度数(直接用含n的代数式表示)【参考答案】一、解答题1(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形的面积为10,正方形的边长为;(2

13、)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论【详解】解:(1)正方形的面积为44431=10则正方形的边长为;(2)如下图所示,正方形的面积为44422=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点正方形的边长为弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键2符合,理由见解

14、析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5bb解析:符合,理由见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5bb=7350,b=70,或b=-70(舍去),即宽为70米,长为1.570=105米,100105110,647075,符合国际标准球场的长宽标准【点睛】本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提3(1)30;(2)不能.【

15、解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】解:(1)大正方形的面积是: 大正解析:(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】解:(1)大正方形的面积是: 大正方形的边长是: 30;(2)设长方形纸片的长为4xcm,宽为3xcm,则4x3x720,解得:x ,4x 30,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2故答案为(1)30;(2)不能.【点睛】本题考查算

16、术平方根,解题的关键是能根据题意列出算式4(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用【详解】解:(1)=20(m),420=80(m),答:原来正方形场地的周长为80m;(2

17、)设这个长方形场地宽为3am,则长为5am由题意有:3a5a=300,解得:a=,3a表示长度,a0,a=,这个长方形场地的周长为 2(3a+5a)=16a=16(m),80=165=1616,这些铁栅栏够用【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长58;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术

18、平方根即可【详解】解:正方形面积=44-422=8;正方形的边长=【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根记为二、解答题6(1)60;(2)n+40;(3)n+40或n-40或220-n【分析】(1)过点E作EFAB,然后根据两直线平行内错角相等,即可求BED的度数;(2)同(1)中方法求解解析:(1)60;(2)n+40;(3)n+40或n-40或220-n【分析】(1)过点E作EFAB,然后根据两直线平行内错角相等,即可求BED的度数;(2)同(1)中方法求解即可;(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况

19、,讨论,分别过点E作EFAB,由角平分线的定义,平行线的性质,以及角的和差计算即可【详解】解:(1)当n=20时,ABC=40,过E作EFAB,则EFCD,BEF=ABE,DEF=CDE,BE平分ABC,DE平分ADC,BEF=ABE=20,DEF=CDE=40,BED=BEF+DEF=60;(2)同(1)可知:BEF=ABE=n,DEF=CDE=40,BED=BEF+DEF=n+40;(3)当点B在点A左侧时,由(2)可知:BED=n+40;当点B在点A右侧时,如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=2n,ADC=80,ABE=ABC=n,CDG=ADC=40,A

20、BCDEF,BEF=ABE=n,CDG=DEF=40,BED=BEF-DEF=n-40;如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=2n,ADC=80,ABE=ABC=n,CDG=ADC=40,ABCDEF,BEF=180-ABE=180-n,CDE=DEF=40,BED=BEF+DEF=180-n+40=220-n;如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=n,ADC=70,ABG=ABC=n,CDE=ADC=40,ABCDEF,BEF=ABG=n,CDE=DEF=40,BED=BEF-DEF=n-40;综上所述,BED的度数为n+40或n-

21、40或220-n【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键7(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD解析:(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;(2)根据角平分线可得EADCAD,由平行线的性质可得BEAD,ACBCAD,则有ACBB;(3)由ACBC,有ACB9

22、0,则可求BAC40,由平行线的性质可得ACAD【详解】解:(1)是,理由如下:要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;故答案为:是;(2)BACB,理由如下:AD平分EAC,EADCAD,ADBC,BEAD,ACBCAD,BACB(3)ACBC,ACB90,EBF50,BAC40,ADBC,ADAC【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键8(1)B,EF,CD,D;(2)65;180【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)如图1,过点E作EFAB,当

23、点B在点A的左侧时,根据ABC60,解析:(1)B,EF,CD,D;(2)65;180【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)如图1,过点E作EFAB,当点B在点A的左侧时,根据ABC60,ADC70,参考小亮思考问题的方法即可求BED的度数;如图2,过点E作EFAB,当点B在点A的右侧时,ABC,ADC,参考小亮思考问题的方法即可求出BED的度数【详解】解:(1)过点E作EFAB,则有BEFB,ABCD,EFCD,FEDD,BEDBEF+FEDB+D;故答案为:B;EF;CD;D;(2)如图1,过点E作EFAB,有BEFEBAABCD,EFCDFEDEDCBEF+FEDE

24、BA+EDC即BEDEBA+EDC,BE平分ABC,DE平分ADC,EBAABC30,EDCADC35,BEDEBA+EDC65答:BED的度数为65;如图2,过点E作EFAB,有BEF+EBA180BEF180EBA,ABCD,EFCDFEDEDCBEF+FED180EBA+EDC即BED180EBA+EDC,BE平分ABC,DE平分ADC,EBAABC,EDCADC,BED180EBA+EDC180答:BED的度数为180【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质9(1);(2)见解析;(3)105【分析】(1)通过平行线性质和直角三角形内角关系即可求

25、解(2)过点B作BGDM,根据平行线找角的联系即可求解(3)利用(2)的结论,结合角平分线性质解析:(1);(2)见解析;(3)105【分析】(1)通过平行线性质和直角三角形内角关系即可求解(2)过点B作BGDM,根据平行线找角的联系即可求解(3)利用(2)的结论,结合角平分线性质即可求解【详解】解:(1)如图1,设AM与BC交于点O,AMCN,CAOB,ABBC,ABC90,AAOB90,AC90,故答案为:AC90;(2)证明:如图2,过点B作BGDM,BDAM,DBBG,DBG90,ABDABG90,ABBC,CBGABG90,ABDCBG,AMCN,CCBG,ABDC; (3)如图3,

26、过点B作BGDM,BF平分DBC,BE平分ABD,DBFCBF,DBEABE,由(2)知ABDCBG,ABFGBF,设DBE,ABF,则ABE,ABD2CBG,GBFAFB,BFC3DBE3,AFC3,AFCNCF180,FCBNCF180,FCBAFC3,BCF中,由CBFBFCBCF180得:233180,ABBC,290,15,ABE15,EBCABEABC1590105故答案为:105【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键10(1)120,90;(2)1=120-n,2=90+n;见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)根据邻补

27、角的定义求出ABE,再根据两直线平行,同位角相解析:(1)120,90;(2)1=120-n,2=90+n;见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)根据邻补角的定义求出ABE,再根据两直线平行,同位角相等可得1=ABE,根据两直线平行,同旁内角互补求出BCG,然后根据周角等于360计算即可得到2;结合图形,分AB、BC、AC三条边与直尺垂直讨论求解【详解】解:(1)1=180-60=120,2=90;故答案为:120,90;(2)如图2,ABC=60,ABE=180-60-n=120-n,DGEF, 1=ABE=120-n,BCG=180-CBF=180-n,ACB+BC

28、G+2=360,2=360-ACB-BCG=360-90-(180-n)=90+n;当n=30时,ABC=60,ABF=30+60=90,ABDG(EF);当n=90时,C=CBF=90,BCDG(EF),ACDE(GF);当n=120时,ABDE(GF)【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键三、解答题11(1)146;(2)AOG+NEF=90;(3)见解析【分析】(1)作CP/a,则CP/a/b,根据平行线的性质求解(2)作CP/a,由平行线的性质及等量代换得AOG+N解析:(1)146;(2)AOG+NE

29、F=90;(3)见解析【分析】(1)作CP/a,则CP/a/b,根据平行线的性质求解(2)作CP/a,由平行线的性质及等量代换得AOG+NEF=ACP+PCB=90(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解【详解】解:(1)如图,作CP/a,a/b,CP/a,CP/a/b,AOG=ACP=56,BCP+CEF=180,BCP=180-CEF,ACP+BCP=90,AOG+180-CEF=90,CEF=180-90+AOG=146(2)AOG+NEF=90.理由如下:如图,作CP/a,则CP/a/b,AOG=ACP,BCP+CEF=180,NEF+CEF

30、=180,BCP=NEF,ACP+BCP=90,AOG+NEF=90(3)如图,当点P在GF上时,作PN/a,连接PQ,OP,则PN/a/b,GOP=OPN,PQF=NPQ,OPQ=OPN+NPQ=GOP+PQF,GOC=GOP+POQ=135,GOP=135-POQ,OPQ=135-POQ+PQF如图,当点P在GF延长线上时,作PN/a,连接PQ,OP,则PN/a/b,GOP=OPN,PQF=NPQ,OPN=OPQ+QPN,GOP=OPQ+PQF,135-POQ=OPQ+PQF【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解12(1)见解

31、析;(2)45;(3)不变,见解析;【分析】(1)由可求得m及n,从而可求得MOC=OCQ,则可得结论;(2)易得AON的度数,由两条角平分线,可得DON,OCF的度数,也解析:(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m及n,从而可求得MOC=OCQ,则可得结论;(2)易得AON的度数,由两条角平分线,可得DON,OCF的度数,也易得COE的度数,由三角形外角的性质即可求得OEF的度数;(3)不变,分三种情况讨论即可【详解】(1),且,m=20,n=70MOC=90AOM=70MOC=OCQ=70MNPQ(2)AON=180AOM=160又平分,平分, OEF=OC

32、F+COE=35+10=45故答案为:45(3)不变,理由如下:如图,当020时,CF平分OCQOCF=QCF设OCF=QCF=x则OCQ=2xMNPQMOC=OCQ=2xAON=36090(1802x)=90+2x,OD平分AONDON=45+xMOE=DON=45+xCOE=MOEMOC=45+x2x=45xOEF=COE+OCF=45x+x=45当=20时,OD与OB共线,则OCQ=90,由CF平分OCQ知,OEF=45当2090时,如图CF平分OCQOCF=QCF设OCF=QCF=x则OCQ=2xMNPQNOC=180OCQ=1802xAON=90+(1802x)=2702x,OD平分

33、AONAOE=135xCOE=90AOE=90(135x)=x45OEF=OCFCOE=x(x45)=45综上所述,EOF的度数不变【点睛】本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便13(1)110;(2)CPD=+,见解析;(3)当P在BA延长线时,CPD=-;当P在AB延长线上时,CPD=-【分析】(1)过P作PEAB,通过平行线性质求A解析:(1)110;(2)CPD=+,见解析;(3)当P在BA延长线时,CPD=-;当P在AB延长线上时,CPD=-【分析】(1)过P作PEAB,通过平行线性质求APC即可;(2)过P作PEAD交

34、CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(3)画出图形,根据平行线的性质得出=DPE,=CPE,即可得出答案【详解】解:(1)过点P作PEAB,ABCD,PEABCD,A+APE=180,C+CPE=180,PAB=130,PCD=120,APE=50,CPE=60,APC=APE+CPE=110故答案为110;(2)CPD=+,理由是:如图3,过P作PEAD交CD于E,ADBC,ADPEBC,=DPE,=CPE,CPD=DPE+CPE=+;(3)当P在BA延长线时,CPD=-,理由是:如图4,过P作PEAD交CD于E,ADBC,ADPEBC,=DPE

35、,=CPE,CPD=CPE-DPE =-;当P在AB延长线时,CPD=-,理由是:如图5,过P作PEAD交CD于E,ADBC,ADPEBC,=DPE,=CPE,CPD=DPE -CPE =-【点睛】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,分类讨论是解题的关键14(1)见解析;(2)见解析【分析】(1)过点M作MPAB根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论【详解】解:(1)EMF=AEM+MFCAEM+E解析:(1)见解析;(2)见解析【分析】(1)过点M作MPAB根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到

36、结论【详解】解:(1)EMF=AEM+MFCAEM+EMF+MFC=360证明:过点M作MPABABCD,MPCD4=3MPAB,1=2EMF=2+3,EMF=1+4EMF=AEM+MFC;证明:过点M作MQABABCD,MQCDCFM+1=180;MQAB,AEM+2=180CFM+1+AEM+2=360EMF=1+2,AEM+EMF+MFC=360;(2)如图2第一个图:EMN+MNF-AEM-NFC=180;过点M作MPAB,过点N作NQAB,AEM=1,CFN=4,MPNQ,2+3=180,EMN=1+2,MNF=3+4,EMN+MNF=1+2+3+4,AEM+CFN=1+4,EMN+

37、MNF-AEM-NFC=1+2+3+4-1-4=2+3=180;如图2第二个图:EMN-MNF+AEM+NFC=180过点M作MPAB,过点N作NQAB,AEM+1=180,CFN=4,MPNQ,2=3,EMN=1+2,MNF=3+4,EMN-MNF=1+2-3-4,AEM+CFN=180-1+4,EMN-MNF+AEM+NFC=1+2-3-4+180-1+4=180【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键15(1);(2)理由见解析;(3),理由见解析【分析】(1)由平角定义求出342,再由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得2ABD180,

38、1解析:(1);(2)理由见解析;(3),理由见解析【分析】(1)由平角定义求出342,再由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得2ABD180,1DBC,则ABDABCDBC601,进而得出结论;(3)过点C 作CPa,由角平分线定义得CAMBAC30,BAM2BAC60,由平行线的性质得1BAM60,PCACAM30,2BCP60,即可得出结论【详解】解:(1)如图1 ,;图1 (2)理由如下:如图2 过点作,图2 ,;(3),图3 理由如下:如图3,过点作,平分,又,又 ,【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键四、解答题16(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=解析:(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=BCD,EAD=EAB=BAD,则可得E= (D+B),继而求得答

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服