资源描述
2023年人教版中学七7年级下册数学期末复习题
一、选择题
1.4的算术平方根是()
A.2 B.4 C. D.
2.下列运动中,属于平移的是( )
A.冷水加热过程中,小气泡上升成为大气泡 B.急刹车时汽车在地面上的滑动
C.随手抛出的彩球运动 D.随风飘动的风筝在空中的运动
3.若点在第四象限内,则点的坐标可能是( )
A. B. C. D.
4.下列命题是假命题的是( )
A.同位角相等,两直线平行
B.三角形的一个外角等于与它不相邻的两个内角的和
C.平行于同一条直线的两条直线平行
D.平面内,到一个角两边距离相等的点在这个角的平分线上
5.如图,,点为上方一点,分别为的角平分线,若,则的度数为( )
A. B. C. D.
6.下列各组数中,互为相反数的是( )
A.与 B.与 C.与 D.与
7.一副直角三角尺如图摆放,点D在BC的延长线上,点E在AC上,EF∥BC,∠B=∠EDF=90°,∠A=30°,∠F=45°,则∠CED的度数是( )
A.10° B.15° C.20° D.25°
8.如图,过点作直线:的垂线,垂足为点,过点作轴,垂足为点,过点作,垂足为点,…,这样依次作下去,得到一组线段:,,,…,则线段的长为( )
A. B. C. D.
九、填空题
9.100的算术平方根是_____.
十、填空题
10.将点先关于x轴对称,再关于y轴对称的点的坐标为_______.
十一、填空题
11.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为_____.
十二、填空题
12.如图将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,如果∠2=70°,则∠1的度数是___________.
十三、填空题
13.将一张长方形纸条ABCD沿EF折叠后,EC′交AD于点G,若∠FGE=62°,则∠GFE的度数是___.
十四、填空题
14.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____.
十五、填空题
15.如果点P(m+3,m﹣2)在x轴上,那么m=_____.
十六、填空题
16.如图,在平面直角坐标系中,动点按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,…按这样的运动规律,经过第2021次运动后,动点的坐标是__________.
十七、解答题
17.(1)-+; (2),求.
十八、解答题
18.已知m+n=2,mn=-15,求下列各式的值.
(1);
(2).
十九、解答题
19.推理填空:如图,已知∠B=∠CGF,∠DGF=∠F;求证:∠B+∠F=180°.
请在括号内填写出证明依据.
证明:∵∠B=∠CGF(已知),
∴AB∥CD( ).
∵∠DGF=∠F(已知),
∴ //EF( ).
∴AB//EF( ).
∴∠B+∠F=180°( ).
二十、解答题
20.在平面直角坐标系中,为坐标原点,点的坐标为,点坐标为,且满足.
(1)若没有平方根,且点到轴的距离是点到轴距离的倍,求点的坐标;
(2)点的坐标为,的面积是的倍,求点的坐标.
二十一、解答题
21.若整数的两个平方根为,;为的整数部分.
(1)求及的值;
(2)求的立方根.
二十二、解答题
22.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.
(1)拼成的正方形的面积与边长分别是多少?
(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少?
(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长
二十三、解答题
23.已知,定点,分别在直线,上,在平行线,之间有一动点.
(1)如图1所示时,试问,,满足怎样的数量关系?并说明理由.
(2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明
(3)当满足,且,分别平分和,
①若,则__________°.
②猜想与的数量关系.(直接写出结论)
二十四、解答题
24.如图,直线,一副三角板(,,)按如图①放置,其中点在直线上,点均在直线上,且平分.
(1)求的度数.
(2)如图②,若将三角形绕点以每秒的速度按逆时针方向旋转(的对应点分别为).设旋转时间为秒.
①在旋转过程中,若边,求的值;
②若在三角形绕点旋转的同时,三角形绕点以每秒的速度按顺时针方向旋转(的对应点分别为).请直接写出当边时的值.
二十五、解答题
25.如图,在中,是高,是角平分线,,.
()求、和的度数.
()若图形发生了变化,已知的两个角度数改为:当,,则__________.
当,时,则__________.
当,时,则__________.
当,时,则__________.
()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论.
【参考答案】
一、选择题
1.A
解析:A
【分析】
依据算术平方根的定义解答即可.
【详解】
4的算术平方根是2,
故选:A.
【点睛】
本题考查的是求一个数的算术平方根的问题,解题关键是明确算术平方根的定义.
2.B
【详解】
解:A、气泡在上升的过程中变大,不属于平移;
B、急刹车时汽车在地面上的滑动属于平移;
C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;
D、随风飘动的树叶在空中的运动,
解析:B
【详解】
解:A、气泡在上升的过程中变大,不属于平移;
B、急刹车时汽车在地面上的滑动属于平移;
C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;
D、随风飘动的树叶在空中的运动,既发生了平移,也发生了旋转.
故选B.
【点睛】
此题主要考查了平移,关键是掌握平移时图形中所有点移动的方向一致,并且移动的距离相等.
3.B
【分析】
根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案.
【详解】
根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有满足要求,
故选:B.
【点睛】
本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.
4.D
【分析】
利用平行线的判定、三角形的外角的性质、角平分线的判定等知识分别判断后即可确定正确的选项.
【详解】
解:A、同位角相等,两直线平行,正确,是真命题,不符合题意;
B、三角形的一个外角等于与它不相邻的两个内角的和,正确,是真命题,不符合题意;
C、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意;
D、角的内部,到一个角两边距离相等的点在这个角的平分线上,故原命题错误,是假命题,符合题意;
故选:D.
【点睛】
考查了命题与定理的知识,解题的关键是了解平行线的判定、三角形的外角的性质、角平分线的判定等知识,难度不大.
5.A
【分析】
过G作GMAB,根据平行线的性质可得∠2=∠5,∠6=∠4,进而可得∠FGC=∠2+∠4,再利用平行线的性质进行等量代换可得3∠1=210°,求出∠1的度数,然后可得答案.
【详解】
解:过G作GMAB,
∴∠2=∠5,
∵ABCD,
∴MGCD,
∴∠6=∠4,
∴∠FGC=∠5+∠6=∠2+∠4,
∵FG、CG分别为∠EFG,∠ECD的角平分线,
∴∠1=∠2=∠EFG,∠3=∠4=∠ECD,
∵∠E+2∠G=210°,
∴∠E+∠1+∠2+∠ECD=210°,
∵ABCD,
∴∠ENB=∠ECD,
∴∠E+∠1+∠2+∠ENB=210°,
∵∠1=∠E+∠ENB,
∴∠1+∠1+∠2=210°,
∴3∠1=210°,
∴∠1=70°,
∴∠EFG=2×70°=140°.
故选:A.
【点睛】
此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内错角相等.
6.C
【分析】
根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.
【详解】
A、,则与不是相反数,此项不符题意;
B、与不是相反数,此项不符题意;
C、,则与互为相反数,此项符合题意;
D、,则与不是相反数,此项不符题意;
故选:C.
【点睛】
本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.
7.B
【分析】
由∠B=∠EDF=90°,∠A=30°,∠F=45°,利用三角形内角和定理可得出∠ACB=60°,∠DEF=45°,由EF∥BC,利用“两直线平行,内错角相等”可得出∠CEF的度数,结合∠CED=∠CEF-∠DEF,即可求出∠CED的度数,此题得解.
【详解】
解:∵∠B=90°,∠A=30°,
∴∠ACB=60°.
∵∠EDF=90°,∠F=45°,
∴∠DEF=45°.
∵EF∥BC,
∴∠CEF=∠ACB=60°,
∴∠CED=∠CEF-∠DEF=60°-45°=15°.
故选:B.
【点睛】
本题考查了三角形内角和定理以及平行线的性质,牢记平行线的性质是解题的关键.
8.B
【分析】
由,可得,然后根据形的性质結合图形即可得到规律,然后按规律解答即可.
【详解】
解:由,可得
∵点A0坐标为(2,0)
∴OA0=2,
∴
∴
∴
∴A2020A2021=
故答案为:
解析:B
【分析】
由,可得,然后根据形的性质結合图形即可得到规律,然后按规律解答即可.
【详解】
解:由,可得
∵点A0坐标为(2,0)
∴OA0=2,
∴
∴
∴
∴A2020A2021=
故答案为:B
【点睛】
本题考查了规律型中点的坐标以及含30°角的直角三角形,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”,结合图形找出变化规律是解题的关键.
九、填空题
9.10
【分析】
根据算术平方根的定义进行计算,即可得到答案.
【详解】
解:∵102=100,
∴=10.
故答案为:10.
【点睛】
本题考查了算术平方根的定义,解题的关键是熟练掌握定义.
解析:10
【分析】
根据算术平方根的定义进行计算,即可得到答案.
【详解】
解:∵102=100,
∴=10.
故答案为:10.
【点睛】
本题考查了算术平方根的定义,解题的关键是熟练掌握定义.
十、填空题
10.(1,-4)
【分析】
直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数.关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解.
【详解】
设关于x轴对称的点为
则点的坐标为
解析:(1,-4)
【分析】
直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数.关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解.
【详解】
设关于x轴对称的点为
则点的坐标为(-1,-4)
设点和点关于y轴对称
则的坐标为(1,-4)
故答案为:(1,-4)
【点睛】
本题考查了关于坐标轴对称的点的坐标特征,关于x轴对称的两点,横坐标相同,纵坐标互为相反数,关于y轴对称的两点,纵坐标相同,横坐标互为相反数.
十一、填空题
11.4
【分析】
根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.
【详解】
解:过点P作MN⊥AD,
∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线A
解析:4
【分析】
根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.
【详解】
解:过点P作MN⊥AD,
∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,
∴PM=PE=2,PE=PN=2,
∴MN=2+2=4.
故答案为4.
十二、填空题
12.55°
【分析】
先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.
【详解】
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠B′FC=∠2=70°,
∴∠1+∠
解析:55°
【分析】
先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.
【详解】
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠B′FC=∠2=70°,
∴∠1+∠B′FE=180°-∠B′FC=110°,
由折叠知∠1=∠B′FE,
∴∠1=∠B′FE=55°,
故答案为:55°.
【点睛】
本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.
十三、填空题
13.59°
【分析】
由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解.
【详解】
解:如图,∵长方形ABCD沿
解析:59°
【分析】
由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解.
【详解】
解:如图,∵长方形ABCD沿EF折叠,
∴∠1=∠2,AD∥BC,
∴∠FGE+∠GEC=180°,
∵∠FGE=62°,
∴∠GEC=180°-62°=118°,
∴∠1=∠2=∠GEC=59°,
∵AD∥BC,
∴∠GFE=∠2,
∴∠GFE=59°.
故答案为59°.
【点睛】
本题主要考查翻折问题,平行线的性质,求解∠GEC的度数是解题的关键.
十四、填空题
14.﹣2或﹣1或0或1或2.
【分析】
有三种情况:
①当时,[x]=-1,(x)=0,[x)=-1或0,
∴[x]+(x)+[x)=-2或-1;
②当时,[x]=0,(x)=0,[x)=0,
∴[x]
解析:﹣2或﹣1或0或1或2.
【分析】
有三种情况:
①当时,[x]=-1,(x)=0,[x)=-1或0,
∴[x]+(x)+[x)=-2或-1;
②当时,[x]=0,(x)=0,[x)=0,
∴[x]+(x)+[x)=0;
③当时,[x]=0,(x)=1,[x)=0或1,
∴[x]+(x)+[x)=1或2;
综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2.
故答案为-2或﹣1或0或1或2.
点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.
【详解】
请在此输入详解!
十五、填空题
15.【分析】
根据x轴上的点的纵坐标等于0列式计算即可得解.
【详解】
∵点P(m+3,m﹣2)在x轴上,
∴m﹣2=0,
解得m=2.
故答案为:2.
【点睛】
此题考查点的坐标,熟记x轴上的点的纵
解析:【分析】
根据x轴上的点的纵坐标等于0列式计算即可得解.
【详解】
∵点P(m+3,m﹣2)在x轴上,
∴m﹣2=0,
解得m=2.
故答案为:2.
【点睛】
此题考查点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.
十六、填空题
16.【分析】
根据图象结合动点P第一次、第二次、第三次、第四次运动后的坐标特点可发现各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,由此规律可求解.
【详解】
解:由图象可得:动点按图中箭头
解析:
【分析】
根据图象结合动点P第一次、第二次、第三次、第四次运动后的坐标特点可发现各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,由此规律可求解.
【详解】
解:由图象可得:动点按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,第4次接着运动到,……可知各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,
∵,
∴经过第2021次运动后,动点P的坐标为;
故答案为.
【点睛】
本题主要考查点的坐标规律,解题的关键是根据题意得到点的坐标基本规律.
十七、解答题
17.(1) - (2)±3
【详解】
试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可;
试题解析:
(1)原式= ;
(2)x2-4=5
x2=9
x=3或x=-3
解析:(1) - (2)±3
【详解】
试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可;
试题解析:
(1)原式= ;
(2)x2-4=5
x2=9
x=3或x=-3
十八、解答题
18.(1)-11;(2)68
【分析】
(1)直接利用完全平方公式将原式变形进而得出答案;
(2)直接利用完全平方公式将原式变形进而得出答案.
【详解】
解:(1)
=
=
=
=-11;
(2)
=
解析:(1)-11;(2)68
【分析】
(1)直接利用完全平方公式将原式变形进而得出答案;
(2)直接利用完全平方公式将原式变形进而得出答案.
【详解】
解:(1)
=
=
=
=-11;
(2)
=
=
=
=68
【点睛】
此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.
十九、解答题
19.同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补
【分析】
根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF
解析:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补
【分析】
根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF,根据平行线的性质得出即可.
【详解】
证明:∵∠B=∠CGF(已知),
∴AB∥CD(同位角相等,两直线平行),
∵∠DGF=∠F(已知 ),
∴CD∥EF(内错角相等,两直线平行),
∴AB∥EF ( 两条直线都与第三条直线平行,这两条直线也互相平行 ),
∴∠B+∠F=180°(两直线平行,同旁内角互补),
故答案为:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.
二十、解答题
20.(1)(-2,6);(2)(,)或(8,-4)
【分析】
(1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标;
(2)利用A(a,-
解析:(1)(-2,6);(2)(,)或(8,-4)
【分析】
(1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标;
(2)利用A(a,-a)和B(a,4-a)得到AB=4,AB与y轴平行,由于点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍,则判断点A、点B在y轴的右侧,即a>0,根据三角形面积公式得到,解方程得到a值,然后写出B点坐标.
【详解】
解:(1)∵a没有平方根,
∴a<0,
∴-a>0,
∵点B到x轴的距离是点A到x轴距离的3倍,
∴,
∵a+b=4,
∴,
解得:a=-2或a=1(舍),
∴b=6,此时点B的坐标为(-2,6);
(2)∵点A的坐标为(a,-a),点B坐标为(a,4-a),
∴AB=4,AB与y轴平行,
∵点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍,
∴点A、点B在y轴的右侧,即a>0,
∴,
解得:a=或a=8,
∴B点坐标为(,)或(8,-4).
【点睛】
本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段与坐标轴的位置关系.也考查了三角形的面积公式和平方根的性质.
二十一、解答题
21.(1)a=4,m=36;(2)6
【分析】
(1)根据平方根的性质得到,求出a值,从而得到m;
(2)估算出的范围,得到b值,代入求出,从而得到的立方根.
【详解】
解:(1)∵整数的两个平方根为,
解析:(1)a=4,m=36;(2)6
【分析】
(1)根据平方根的性质得到,求出a值,从而得到m;
(2)估算出的范围,得到b值,代入求出,从而得到的立方根.
【详解】
解:(1)∵整数的两个平方根为,,
∴,
解得:,
∴,
∴m=36;
(2)∵为的整数部分,
∴,
∴,
∴b=9,
∴,
∴的立方根为6.
【点睛】
本题主要考查立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.
二十二、解答题
22.(1)5;;(2);;(3)能,.
【分析】
(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.
(2)求出斜边长即可.
(3)一共有10个小正
解析:(1)5;;(2);;(3)能,.
【分析】
(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.
(2)求出斜边长即可.
(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图.
【详解】
试题分析:
解:(1)拼成的正方形的面积与原面积相等1×1×5=5,
边长为,
如图(1)
(2)斜边长=,
故点A表示的数为:;点A表示的相反数为:
(3)能,如图
拼成的正方形的面积与原面积相等1×1×10=10,边长为.
考点:1.作图—应用与设计作图;2.图形的剪拼.
二十三、解答题
23.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF
【分析】
(1)由于点是平行线,之间
解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF
【分析】
(1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,,,满足数量关系为:;
(2)当点在的右侧时,,,满足数量关系为:;
(3)①若当点在的左侧时,;当点在的右侧时,可求得;
②结合①可得,由,得出;可得,由,得出.
【详解】
解:(1)如图1,过点作,
,
,
,
,
,
;
(2)如图2,当点在的右侧时,,,满足数量关系为:;
过点作,
,
,
,
,
,
;
(3)①如图3,若当点在的左侧时,
,
,
,分别平分和,
,,
;
如图4,当点在的右侧时,
,
,
;
故答案为:或30;
②由①可知:,
;
,
.
综合以上可得与的数量关系为:或.
【点睛】
本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.
二十四、解答题
24.(1)60°;(2)①6s;②s或s
【分析】
(1)利用平行线的性质角平分线的定义即可解决问题.
(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.
②分两种情形:如图③中,当
解析:(1)60°;(2)①6s;②s或s
【分析】
(1)利用平行线的性质角平分线的定义即可解决问题.
(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.
②分两种情形:如图③中,当BG∥HK时,延长KH交MN于R.根据∠GBN=∠KRN构建方程即可解决问题.如图③-1中,当BG∥HK时,延长HK交MN于R.根据∠GBN+∠KRM=180°构建方程即可解决问题.
【详解】
解:(1)如图①中,
∵∠ACB=30°,
∴∠ACN=180°-∠ACB=150°,
∵CE平分∠ACN,
∴∠ECN=∠ACN=75°,
∵PQ∥MN,
∴∠QEC+∠ECN=180°,
∴∠QEC=180°-75°=105°,
∴∠DEQ=∠QEC-∠CED=105°-45°=60°.
(2)①如图②中,
∵BG∥CD,
∴∠GBC=∠DCN,
∵∠DCN=∠ECN-∠ECD=75°-45°=30°,
∴∠GBC=30°,
∴5t=30,
∴t=6s.
∴在旋转过程中,若边BG∥CD,t的值为6s.
②如图③中,当BG∥HK时,延长KH交MN于R.
∵BG∥KR,
∴∠GBN=∠KRN,
∵∠QEK=60°+4t,∠K=∠QEK+∠KRN,
∴∠KRN=90°-(60°+4t)=30°-4t,
∴5t=30°-4t,
∴t=s.
如图③-1中,当BG∥HK时,延长HK交MN于R.
∵BG∥KR,
∴∠GBN+∠KRM=180°,
∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM,
∴∠KRM=90°-(180°-60°-4t)=4t-30°,
∴5t+4t-30°=180°,
∴t=s.
综上所述,满足条件的t的值为s或s.
【点睛】
本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.
二十五、解答题
25.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.
【分析】
(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;
解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.
【分析】
(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;
(2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案;
(3)按照(2)的方法,将相应的数换成字母即可得出答案.
【详解】
(1)∵,,
∴ .
∵平分,
∴.
∵是高,
,
,
,
.
(2)当,时,
∵,,
∴.
∵平分,
∴.
∵是高,
,
,
;
当,时,
∵,,
∴ .
∵平分,
∴.
∵是高,
,
,
;
当,时,
∵,,
∴.
∵平分,
∴.
∵是高,
,
,
;
当,时,
∵,,
∴.
∵平分,
∴.
∵是高,
,
,
.
(3)当 时,即时,
∵,,
∴ .
∵平分,
∴.
∵是高,
,
,
;
当 时,即时,
∵,,
∴ .
∵平分,
∴.
∵是高,
,
,
;
综上所述,当时,;当时,.
【点睛】
本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.
展开阅读全文