1、2023年人教版七7年级下册数学期末复习(附答案)一、选择题1如图,在所标识的角中,下列说法不正确的是()A和互为补角B和是同位角C和是内错角D和是对顶角2在下列现象中,属于平移的是( )A荡秋千运动B月亮绕地球运动C操场上红旗的飘动D教室可移动黑板的左右移动3点在( )A第一象限B第二象限C第三象限D第四象限4下列命题是假命题的是( )A两个锐角的和是钝角B两条直线相交成的角是直角,则两直线垂直C两点确定一条直线D三角形中至少有两个锐角5如图,点在的延长线上,能证明是( )ABCD6下列计算正确的是( )ABCD7如图,AB/CD,EBF2ABE,ECF3DCE,设ABE,E,F,则,的数量
2、关系是()A4+360B3+360C4360D323608如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如(1,0)、(2,0)、(2,1)、(3,2)、(3,1)、(3,0)、(4,0),根据这个规律探索可得,第20个点的坐标为( )A(6,4)B(6,5)C(7,3)D(7,5)九、填空题9已知 18.044,那么_十、填空题10已知点与点关于轴对称,则的值为_十一、填空题11如图,已知/,和的角平分线交于点F,=_.十二、填空题12如图,BC,AD,有下列结论:ABCD;AEDF;AEBC;AMCBND其中正确的有_(只填序号)十三、填空题13如图,在ABC中,将B
3、、C按如图所示的方式折叠,点B、C均落于边BC上的点Q处,MN、EF为折痕,若A=82,则MQE= _十四、填空题14已知a,b为两个连续的整数,且,则的平方根为_十五、填空题15若P(2a,2a+3)到两坐标轴的距离相等,则点P的坐标是_十六、填空题16在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位;其行走路线如图所示则点的坐标为_十七、解答题17(1)计算:(2)解方程:十八、解答题18求下列各式中的x值:(1)25x2-64=0(2)x3-3=十九、解答题19已知:,垂足分别为B,D,求证:,请你将证明过程补充完整证明:,垂足分别为B
4、,D(已知)(垂直定义)_()_()又(已知)2(),_()()二十、解答题20已知在平面直角坐标系中有三点A(2,1)、B(3,1)、C(2,3)请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由二十一、解答题21计算:(1); (2)12+(2)3;(3)已知实数a、b满足+|b1|=0,求a2017+b2018的值(4)已知+1的整数部分为a,1的小数部分为b,求2a+3b的值二十二、解答题22(1)若一圆的面积
5、与这个正方形的面积都是,设圆的周长为,正方形的周长为,则_(填“=”或“”号)(2)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由二十三、解答题23如图,直线与、分别交于点、,点在直线上,过点作,垂足为点(1)如图1,求证:;(2)若点在线段上(不与、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系; 二十四、解答题24已知:如图1,点,分别为,上一点(1)在,之间有一点(点不在线段上),连接,探究,之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明(2
6、)如图2,在,之两点,连接,请选择一个图形写出,存在的数量关系(不需证明)二十五、解答题25如图,已知直线ab,ABC100,BD平分ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P问1的度数与EPB的度数又怎样的关系?(特殊化)(1)当140,交点P在直线a、直线b之间,求EPB的度数;(2)当170,求EPB的度数;(一般化)(3)当1n,求EPB的度数(直接用含n的代数式表示)【参考答案】一、选择题1C解析:C【分析】根据同位角、内错角、邻补角、对顶角的定义求解判断即可【详解】解:A、和是邻补角,故此选项不
7、符合题意;B、和是同位角,故此选项不符合题意;C、和不是内错角,故此选项符合题意;D、和是对顶角,故此选项不符合题意故选:C【点睛】此题考查了同位角、内错角、对顶角以及邻补角的定义,熟记同位角、内错角、邻补角、对顶角的定义是解题的关键三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线2D【分析】根据平移的性质依次判断,即可得到答案【详解】A、荡秋千运动是旋转,故本选项错误;B、月亮绕地球运动是旋转,故本选
8、项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室解析:D【分析】根据平移的性质依次判断,即可得到答案【详解】A、荡秋千运动是旋转,故本选项错误;B、月亮绕地球运动是旋转,故本选项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室可移动黑板的左右移动是平移,故本选项正确故选:D【点睛】本题考查了平移的知识;解题的关键是熟练掌握平移性质,从而完成求解3C【分析】根据平面直角坐标系象限的符合特点可直接进行排除选项【详解】解:在平面直角坐标系中,第一象限的符合为“+、+”,第二象限的符合为“-、+”;第三象限的符合为“-、-”,第四象限的符合为“+、-”,由此可得点在第三象限;故选
9、C【点睛】本题主要考查平面直角坐标系中象限的符合特点,熟练掌握平面直角坐标系中象限的符合特点是解题的关键4A【分析】选出假命题只要举出反例即可,两个锐角的和是钝角,反例:两个锐角分别是有20、30,和是50,还是锐角,因此是假命题【详解】A.两个锐角的和是钝角是假命题,如两个锐角分别是20、30,而它们的和是50,还是锐角,不是钝角;B.两条直线相交成的角是直角则两直线垂直是真命题;C.两点确定一条直线是真命题;D.三角形中至少有两个锐角是真命题故选:A【点睛】本题通过判断真假命题来考查了解各类知识的概念和意义,熟练掌握各类知识是解题的关键5D【分析】由题意根据平行线的判定定理对四个选项进行逐
10、一分析即可【详解】解:A. ,能证ADBC,故此选项错误;B. ,不能证明,故此选项错误;C. ,不能证明,故此选项错误;D. ,能证明,故此选项正确.故选:D.【点睛】本题考查的是平行线的判定定理,解答此类题目的关键是正确区分两条直线被第三条直线所截形成的同位角、内错角及同旁内角6D【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得【详解】A、,此项错误;B、,此项错误;C、,此项错误;D、,此项正确;故选:D【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键7A【分析】由EBF2ABE,可得EBF2由EBF+BEC+F+ECF360,可得E
11、CF360(2+),那么DCE由BECM+DCE,可得MBECDCE根据AB/CD,得ABEM,进而推断出4+360【详解】解:如图,分别延长BE、CD并交于点MAB/CD,ABEMEBF2ABE,ABE,EBF2EBF+BEC+F+ECF360,ECF360(2+)又ECF3DCE,DCE又BECM+DCE,MBECDCE4+360故选:A【点睛】本题考查了平行线的性质,三角形的外角性质,角度的计算,构造辅助线转化角度是解题的关键8A【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横
12、坐标为偶数,则从0开始数【详解析:A【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数【详解】解:把第一个点作为第一列,和作为第二列,依此类推,则第一列有一个数,第二列有2个数,第列有个数则列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上因为,则第20个数一定在第6列,由下到上是第4个数因而第20个点的坐标是故选:A【点睛】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目九、填空
13、题91.8044【详解】,即.故答案为1.8044解析:1.8044【详解】,即.故答案为1.8044十、填空题10-1【分析】直接利用关于y轴对称点的性质得出a,b的值进而得出答案【详解】解:点A(a,2019)与点是关于y轴的对称点,a=-2020,b=2019,a+b=-1故答案为:解析:-1【分析】直接利用关于y轴对称点的性质得出a,b的值进而得出答案【详解】解:点A(a,2019)与点是关于y轴的对称点,a=-2020,b=2019,a+b=-1故答案为:-1【点睛】本题考查关于y轴对称的点的坐标性质,解题关键是熟练掌握横纵坐标的关系十一、填空题11135;【分析】连接BD,根据三角
14、形内角和定理得出C+CBD+CDB=180,再由BCCD可知C=90,故CBD+CDB=90,再由ABDE可知ABD+BDE=180解析:135;【分析】连接BD,根据三角形内角和定理得出C+CBD+CDB=180,再由BCCD可知C=90,故CBD+CDB=90,再由ABDE可知ABD+BDE=180,故CBD+CDB+ABD+BDE =270,再由ABC和CDE的平分线交于点F可得出CBF+CDF的度数,由四边形内角和定理即可得出结论【详解】解:连接BD,C+CBD+CDB=180,BCCD,C=90,CBD+CDB=90ABDE,ABD+BDE=180,CBD+CDB+ABD+BDE=9
15、0+180=270,即ABC+CDE=270ABC和CDE的平分线交于点F,CBF+CDF=270=135,BFD=360-90-135=135故答案为135【点睛】本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质十二、填空题12【分析】根据平行线的判定与性质分析判断各项正确与否即可【详解】解:BC,ABCD,AAEC,又AD,AECD,AEDF,AMC解析:【分析】根据平行线的判定与性质分析判断各项正确与否即可【详解】解:BC,ABCD,AAEC,又AD,AECD,AEDF,AMCFNM,又BNDFNM,AMCBND,故正确,由条件不能得
16、出AMC90,故不一定正确;故答案为:【点睛】本题考查了对顶角的性质及平行线的判定与性质,难度一般十三、填空题13【分析】根据折叠的性质得到,再根据的度数即可求出的度数,再根据求解即可【详解】解:折叠,故答案是:【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质解析:【分析】根据折叠的性质得到,再根据的度数即可求出的度数,再根据求解即可【详解】解:折叠,故答案是:【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质十四、填空题143【分析】分别算出a,b计算即可;【详解】a,b为两个连续的整数,且,的平方根为3;故答案是:3【点睛】本题主要考查了无理数的估算和求一个数的平解析:3【分析】分别
17、算出a,b计算即可;【详解】a,b为两个连续的整数,且,的平方根为3;故答案是:3【点睛】本题主要考查了无理数的估算和求一个数的平方根,准确计算是解题的关键十五、填空题15(,)或(7,7).【分析】根据题意可得关于a的绝对值方程,解方程可得a的值,进一步即得答案.【详解】解:P(2a,2a+3)到两坐标轴的距离相等,.或,解得或,当时,P点解析:(,)或(7,7).【分析】根据题意可得关于a的绝对值方程,解方程可得a的值,进一步即得答案.【详解】解:P(2a,2a+3)到两坐标轴的距离相等,.或,解得或,当时,P点坐标为(,);当时,P点坐标为(7,7).故答案为(,)或(7,7).【点睛】
18、本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.十六、填空题16(1010,1)【分析】根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用20204=505,可得出点A2021的坐标【详解】解:由图可知A4,A8都在x轴上,解析:(1010,1)【分析】根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用20204=505,可得出点A2021的坐标【详解】解:由图可知A4,A8都在x轴上,蚂蚁每次移动1个单位,OA4=2,OA8=4,A4(2,0),A8(4,0),OA4n=4n2=2n,点A4n的坐标为(2n,0)20204
19、=505,点A2020的坐标是(1010,0)点A2021的坐标是(1010,1)故答案为:(1010,1)【点睛】本题考查了规律型问题在点的坐标问题中的应用,数形结合并正确得出规律是解题的关键十七、解答题17(1);(2)【分析】(1)根据实数的运算法则直接计算即可,(2)利用立方根的含义求解再求解即可【详解】(1)原式= (2)解:【点睛】本题考查的是实数的运算,求一个数的立方根解析:(1);(2)【分析】(1)根据实数的运算法则直接计算即可,(2)利用立方根的含义求解再求解即可【详解】(1)原式= (2)解:【点睛】本题考查的是实数的运算,求一个数的立方根,掌握求解的方法是解题关键十八、
20、解答题18(1)x=;(2)x=【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得; (2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可解析:(1)x=;(2)x=【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得; (2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可得【详解】解:(1)25x2-64=0,25x2=64,则x2=,x=;(2)x3-3=,x3=,则x=故答案为:(1)x=;(2)x=.【点睛】本题主要考查立方根和平方根,解题的关键是将原等式变形为x3=a或x
21、2=a(a为常数)的形式及平方根、立方根的定义十九、解答题19答案见详解【分析】根据ABBC,ABDE可以得到BCDE,从而得到1=EBC=2,即可得到BEGF,即可得到答案【详解】证明:ABBC,ABDE,垂足分别为B,D(己解析:答案见详解【分析】根据ABBC,ABDE可以得到BCDE,从而得到1=EBC=2,即可得到BEGF,即可得到答案【详解】证明:ABBC,ABDE,垂足分别为B,D(己知),ABCADE90(垂直定义),BCDE(同位角相等,两直线平行),1EBC(两直线平行,内错角相等),又l2(已知),2EBC(等量代换),BEGF(同位角相等,两直线平行),BECFGE180
22、(两直线平行,同旁内角互补)【点睛】本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解二十、解答题20(1)见解析;(2)SABC5;(3)存在,P点的坐标为(0,5)或(0,3)【分析】(1)根据点的坐标,直接描点;(2)根据点的坐标可知,ABx轴,且AB3(2)5,点C到线解析:(1)见解析;(2)SABC5;(3)存在,P点的坐标为(0,5)或(0,3)【分析】(1)根据点的坐标,直接描点;(2)根据点的坐标可知,ABx轴,且AB3(2)5,点C到线段AB的距离312,根据三角形面积公式求解;(3)因为AB5,要求ABP的面积为10,只要P点到AB的
23、距离为4即可,又P点在y轴上,满足题意的P点有两个【详解】解:(1)描点如图;(2)依题意,得ABx轴,且AB3(2)5,SABC525;(3)存在;AB5,SABP10,P点到AB的距离为4,又点P在y轴上,P点的坐标为(0,5)或(0,3)【点睛】本题考查了点的坐标的表示方法,能根据点的坐标表示三角形的底和高并求三角形的面积二十一、解答题21(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案利用绝对值以及平解析:(1)0;(2)-3;(3)2;(4).【解析】【分析】直
24、接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案利用绝对值以及平方根的非负性质得出a,b的值,进而得出答案;直接利用2的范围进而得出a,b的值,即可得出答案【详解】解:;,;的整数部分为a,的小数部分为b,【点睛】此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键二十二、解答题22(1);(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于解析:(1);(2)不能,理由见解析【分析】(
25、1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于的方程,解得的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案【详解】解:(1)圆的面积与正方形的面积都是,圆的半径为,正方形的边长为,(2)不能裁出长和宽之比为的长方形,理由如下:设裁出的长方形的长为,宽为,由题意得:,解得或(不合题意,舍去),长为,宽为,正方形的面积为,正方形的边长为,不能裁出长和宽之比为的长方形【点睛】本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键二十三、解答题2
26、3(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解【详解】(1)证明:如图,过点作, ,(2)补全图形如图2、图3,猜想:或证明:过点作 , ,平分,如图3,当点在上时,平分,即如图2,当点在上时,平分,即【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平
27、行线,找出角与角之间的数量关系二十四、解答题24(1)见解析;(2)见解析【分析】(1)过点M作MPAB根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论【详解】解:(1)EMF=AEM+MFCAEM+E解析:(1)见解析;(2)见解析【分析】(1)过点M作MPAB根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论【详解】解:(1)EMF=AEM+MFCAEM+EMF+MFC=360证明:过点M作MPABABCD,MPCD4=3MPAB,1=2EMF=2+3,EMF=1+4EMF=AEM+MFC;证明:过点M作MQABABCD,MQCDCFM+1=180;MQAB,
28、AEM+2=180CFM+1+AEM+2=360EMF=1+2,AEM+EMF+MFC=360;(2)如图2第一个图:EMN+MNF-AEM-NFC=180;过点M作MPAB,过点N作NQAB,AEM=1,CFN=4,MPNQ,2+3=180,EMN=1+2,MNF=3+4,EMN+MNF=1+2+3+4,AEM+CFN=1+4,EMN+MNF-AEM-NFC=1+2+3+4-1-4=2+3=180;如图2第二个图:EMN-MNF+AEM+NFC=180过点M作MPAB,过点N作NQAB,AEM+1=180,CFN=4,MPNQ,2=3,EMN=1+2,MNF=3+4,EMN-MNF=1+2-
29、3-4,AEM+CFN=180-1+4,EMN-MNF+AEM+NFC=1+2-3-4+180-1+4=180【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键二十五、解答题25(1)EPB170;(2)当交点P在直线b的下方时:EPB20,当交点P在直线a,b之间时:EPB160,当交点P在直线a的上方时:EPB15020;(3)当解析:(1)EPB170;(2)当交点P在直线b的下方时:EPB20,当交点P在直线a,b之间时:EPB160,当交点P在直线a的上方时:EPB15020;(3)当交点P在直线a,b之间时:EPB180|n50|;当交点P在直线a上方或直线b下方时:
30、EPB|n50|.【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:当交点P在直线b的下方时;当交点P在直线a,b之间时;当交点P在直线a的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:当交点P在直线a,b之间时;当交点P在直线a上方或直线b下方时;【详解】解:(1)BD平分ABC,ABDDBCABC50,EPB是PFB的外角,EPBPFB+PBF1+(18050)170;(2)当交点P在直线b的下方时:EPB15020;当交点P在直线a,b之间时:EPB50+(1801)160;当交点P在直线a的上方时:EPB15020;(3)当交点P在直线a,b之间时:EPB180|n50|;当交点P在直线a上方或直线b下方时:EPB|n50|;【点睛】考查知识点:平行线的性质;三角形外角性质根据动点P的位置,分类画图,结合图形求解是解决本题的关键数形结合思想的运用是解题的突破口