1、人教版初二上学期期末强化数学检测试卷含答案一、选择题1下列图形是轴对称图形的是()ABCD2某公司运用5G技术,下载一个2.4M的文件大约只需要0.000048秒,则0.000048用科学记数法表示为()ABCD3下列计算正确的是()AB CD4若代数式在实数范围内有意义,则x的取值范围是()ABCD且5下列从左边到右边的变形中,是因式分解的是()ABCD6下列等式中,从左向右的变形正确的是ABCD7如图,已知,添加一个条件后,仍无法判定的是()ABCD8若二次根式有意义,且关于x的分式方程有正数解,则符合条件的整数m的和是()A7B6C5D49如图所示,将四张全等的长方形硬纸片围成一个正方形
2、,根据图形阴影部分面积的关系,可以直观地得到一个关于、的恒等式为()ABCD10如图,在四边形中,对角线平分,下列结论正确的是()ABCD与的大小关系不确定二、填空题11若分式的值为0,则x_12已知点A与点B(3,4)关于x轴对称,则点A关于y轴对称的点的坐标为_13已知a+b5,ab3,_14计算的结果是_15如图,等腰的底边BC的长为6cm,面积是24cm2,腰AB的垂直平分线EF分别交AB,AC于点E,F,若D为边BC的中点,M为线段EF上一动点,则周长的最小值为_cm16若16b2a2m是完全平方式,则m_17若,则的值为_18如图,直线PQ经过RtABC的直角顶点C,ABC的边上有
3、两个动点D、E,点D以1cm/s的速度从点A出发,沿ACCB移动到点B,点E以3cm/s的速度从点B出发,沿BCCA移动到点A,两动点中有一个点到达终点后另一个点继续移动到终点过点D、E分别作DMPQ,ENPQ,垂足分别为点M、N,若AC=6cm,BC=8cm,设运动时间为t,则当t=_ s时,以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等三、解答题19把下列多项式因式分解:(1)(2)20化简:21已知:如图,C为线段BE上一点,ABDC,ABEC,BCCD求证:ACDE22如图,将一副三角尺如此放置,点D在边上,不动,将绕点D转动,使线段与相交,线段与相交(1)当时,如图1
4、求的度数;(2)当与不平行时,如图2,的度数会不会变化?请说明由理23某食品工厂生产蛋黄肉粽,由于端午节临近,该食品工厂接收了一个公司的端午福利订单,由一车间完成该订单,共需生产3万个粽子,计划10天完成(1)该食品工厂的计划是安排x名工人恰好按时完成,若所有工人生产效率相同,则每名工人每天应生产蛋黄肉粽 个(用含x的式子表示)(2)该食品工厂一车间安排x名工人按原计划生产3天后,公司提出由于物流需要时间,希望可以提前几天交货,所以食品工厂又从其它车间抽调了6名工人参加该订单的生产(所有工人生产效率相同),结果该车间提前2天完成了该订单问食品工厂一车间原计划安排了多少名工人生产蛋黄肉粽?24如
5、图是我国古代数学家杨辉最早发现的,称为“杨辉三角”它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!如图是(a+b)n的三个展开式结合上述两图之间的规律解题:(1)请直接写出(a+b)4的展开式:(a+b)4 (2)请结合图中的展开式计算下面的式:(x+2)3 25已知:,(1)当a,b满足时,连接AB,如图1 求:的值点M为线段AB上的一点(点M不与A,B重合,其中BMAM),以点M为直角顶点,OM为腰作等腰直角MON,连接BN,求证:(2)当,连接AB,若点,过点D作于点E,点B与点C关于x轴对称,点F是线段DE上的一点(点F不与点E,D重合)且满足,连接A
6、F,试判断线段AC与AF之间的位置关系和数量关系,并证明你的结论26以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、(1)试判断、的数量关系,并说明理由;(2)延长交于点试求的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由【参考答案】一、选择题2D解析:D【分析】根据轴对称图形的概念进行解答即可【详解】解:A不是轴对称图形,故此选项不符合题意;B不是轴对称图形,故此选项不合题意;C不是轴对称图形,故此选项不合题意;D是轴对称图形,故此选项符合题意;故选:D【点睛】本题考查了轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图
7、形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴3C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000048=4.810-5,故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4C解析:C【分析】根据同底数幂的乘法,整式的乘法,幂的乘方来计算求解【详解】解:A,原选项计算错误,此项不符合题意;B,原选项
8、计算错误,此项不符合题意;C,原选项计算正确,此项符合题意;D,原选项计算错误,此项不符合题意故选:C【点睛】本题主要考查了同底数幂的乘法,整式乘法的运算法则,幂的乘方的运算法则,理解相关知识是解答关键5C解析:C【分析】根据二次根式的被开方数是非负数,分式的分母不为0解答即可【详解】解:代数式在实数范围内有意义,x-10,且x0解得:x1故选:C【点睛】本题主要考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键6C解析:C【分析】利用因式分解的定义判断即可【详解】解:A、是整式的乘法,不是因式分解,故本选项不符合题意;B、右边不是整式的积的形式,不符合因式分解的定义,
9、故本选项不符合题意;C、符合因式分解的定义,故本选项符合题意;D、右边不是整式的积的形式(含有分式),不符合因式分解的定义,故本选项不符合题意故选:C【点睛】此题考查了因式分解,熟练掌握因式分解的定义是解本题的关键分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式7C解析:C【分析】根据分式的基本性质和分式变号法则,依次分析各个选项,即可选出正确选项【详解】解:A,选项不正确,不符合题意;B,选项不正确,不符合题意;C,选项正确,符合题意;D,选项不正确,不符合题意;故选:C【点睛】本题考查了分式的基本性质,正确掌握分式的基本性质是解题的关键8
10、C解析:C【分析】A根据可判断,B根据,可判断,C不能判断,D根据可判断【详解】解:,A. ,B. ,C. 不能判断D. ,故选C【点睛】本题考查了三角形全等的判定定理,掌握全等三角形的判定定理是解题的关键9D解析:D【分析】根据二次根式有意义,可得,解出关于的分式方程 的解为,解为正数解,进而确定m的取值范围,注意增根时m的值除外,再根据m为整数,确定m的所有可能的整数值,求和即可【详解】解:去分母得,解得,关于x的分式方程有正数解, ,又是增根,当时,即,有意义,因此 且,m为整数,m可以为-4,-2,-1,0,1,2,其和为-4,故选:D【点睛】考查二次根式的意义、分式方程的解法,以及分
11、式方程产生增根的条件等知识,解题的关键是理解正数解,整数m的意义10C解析:C【分析】根据图形特点,利用等面积法分别表示阴影部分的面积,结合完全平方公式可得出结论【详解】方法一:阴影部分的面积为:,方法二:阴影部分的面积为:,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为故选:C【点睛】本题考查完全平方公式与图形面积的关系,熟练掌握完全平方公式是关键11A解析:A【分析】先通过在AB上截取AE=AD,得到一对全等三角形,利用全等三角形的性质得到对应边相等,再利用三角形的三边关系和等量代换即可得到A选项正确【详解】解:如图,在AB上取,对角线平分,在和中,故选:【点睛】本题考
12、查了全等三角形的判定与性质、角平分线的定义和三角形的三边关系,要求学生能根据已知条件做出辅助线构造全等三角形,并能根据全等三角形的性质得到不同线段之间的关系,利用三角形三边关系判断大小,解决本题的关键是牢记概念和公式,正确作辅助线构造全等三角形等二、填空题125【分析】求出分式的分子等于0且分母不为0时的的值即可【详解】解:由题意得:,解得,故答案为:5【点睛】本题考查了分式值为零的条件,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少13A解析:(3,-4)【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数;关于y轴对称的点的纵坐
13、标相等,横坐标互为相反数,可得答案【详解】解:点A与点B(3,4)关于x轴对称,A(-3,-4),点A关于y轴对称的点的坐标为(3,-4)故答案为:(3,-4)【点睛】本题考查了关于x轴、y轴对称的点的坐标,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数;关于y轴对称的点的纵坐标相等,横坐标互为相反数是解题的关键14【分析】将a+b=5ab=3代入原式=,计算可得【详解】当a+b=5ab=3时,原式=.故答案为【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则和完全平方公式15【分析】先将(-0.25)2021化成(-0.25)(-0.25)2020再逆用积的乘方运算
14、法则计算即可【详解】解:原式=(-0.25)(-0.25)202042020=(-0.25)(-0.254)2020=(-0.25)12020=(-0.25)1=-0.25故答案为:-0.25【点睛】本题考查积的乘方运算的应用,逆用积的乘方运算法则是解题的关键1611【分析】连接AD交EF于点,连接AM,由线段垂直平分线的性质可知AM=MB,则,故此当A、M、D在一条直线上时, 有最小值,然后依据三角形三线合一的性质可证明AD为ABC底边上的高线,依据解析:11【分析】连接AD交EF于点,连接AM,由线段垂直平分线的性质可知AM=MB,则,故此当A、M、D在一条直线上时, 有最小值,然后依据三
15、角形三线合一的性质可证明AD为ABC底边上的高线,依据三角形的面积为24可求得AD的长;【详解】连接AD交EF于点,连接AM, ABC是等腰三角形,点D是BC边的中点,EF是线段AB的垂直平分线,AM=MB,当点M位于时,有最小值,最小值为8,BDM的周长的最小值为cm;故答案是11cm【点睛】本题主要考查了三角形综合,结合垂直平分线的性质计算是关键178ab【分析】根据完全平方式a22ab+b2进行求解即可【详解】解:16b2a2m=(4b)2+m+a2是完全平方式,m=24ba=8ab,故答案为:8ab解析:8ab【分析】根据完全平方式a22ab+b2进行求解即可【详解】解:16b2a2m
16、=(4b)2+m+a2是完全平方式,m=24ba=8ab,故答案为:8ab【点睛】本题考查完全平方式,熟记完全平方式的形式是解答的关键18【分析】根据完全平方公式的变形,代入计算即可【详解】解:将ab2两边平方得:,把ab1代入得:,则原式 ,故答案为:【点睛】此题主要考查了代数式求值,正确应用解析:【分析】根据完全平方公式的变形,代入计算即可【详解】解:将ab2两边平方得:,把ab1代入得:,则原式 ,故答案为:【点睛】此题主要考查了代数式求值,正确应用完全平方公式是解题关键191或或12【分析】由以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等可知CE=CD,而CE,CD的表
17、示由E,D的位置决定,故需要对E,D的位置分当E在BC上,D在AC上时或当E在解析:1或或12【分析】由以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等可知CE=CD,而CE,CD的表示由E,D的位置决定,故需要对E,D的位置分当E在BC上,D在AC上时或当E在AC上,D在AC上时,或当E到达A,D在BC上时,分别讨论【详解】解:当E在BC上,D在AC上,即0t时,CE=(8-3t)cm,CD=(6-t)cm,以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等CD=CE,8-3t=6-t,t=1s,当E在AC上,D在AC上,即t时,CE=(3t-8)cm,CD=(6-
18、t)cm,3t-8=6-t,t=s,当E到达A,D在BC上,即t14时,CE=6cm,CD=(t-6)cm,6=t-6,t=12s,故答案为:1或或12【点睛】本题主要考查了三角形全等的性质,解决问题的关键是对动点所在的位置进行分类,分别表示出每种情况下CD和CE的长三、解答题20(1)(2)【分析】(1)利用提取公因式法来求解;(2)先提取公因式-8,再利用完全平方公式求解(1)解:;(2)解:【点睛】本题主要考查了因解析:(1)(2)【分析】(1)利用提取公因式法来求解;(2)先提取公因式-8,再利用完全平方公式求解(1)解: ;(2)解: 【点睛】本题主要考查了因式分解,理解提取公因式法
19、和公式法是解答关键2【分析】由分式的加减乘除运算,把分式进行化简,即可得到答案【详解】解:原式;【点睛】本题考查了分式的加减乘除混合运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简解析:【分析】由分式的加减乘除运算,把分式进行化简,即可得到答案【详解】解:原式;【点睛】本题考查了分式的加减乘除混合运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简22见解析【分析】由“SAS”可证ABCECD,可得A=E=ACD【详解】证明:ABDC,BECD,AACD 在ABC和ECD中,ABC解析:见解析【分析】由“SAS”可证ABCECD,可得A=E=ACD【详解】证明:ABDC
20、,BECD,AACD 在ABC和ECD中,ABCECD(SAS)AEACDE【点睛】本题考查了全等三角形的判定和性质,证明ABCECD是本题的关键23(1);(2)的度数不会变化,见解析【分析】(1)根据得出,即可得出结论;(2)根据三角形内角和定理得出,然后通过已知角度数和,即可得出的度数(1),解析:(1);(2)的度数不会变化,见解析【分析】(1)根据得出,即可得出结论;(2)根据三角形内角和定理得出,然后通过已知角度数和,即可得出的度数(1),(2)绕点D转动过程中,的度数不会变化理由如下:, 【点睛】本题主要考查了平行线的性质和三角形内角和定理的应用,熟练掌握平行线的性质和三角形内角
21、和定理是解题的关键24(1)(2)15名【分析】(1)根据x名工人10天恰好生产3万个粽子,即可求得;(2)根据该订单共生产3万个粽子列分式方程,求解即可(1)解:每名工人每天应生产蛋黄肉粽(个)解析:(1)(2)15名【分析】(1)根据x名工人10天恰好生产3万个粽子,即可求得;(2)根据该订单共生产3万个粽子列分式方程,求解即可(1)解:每名工人每天应生产蛋黄肉粽(个),故答案为:;(2)根据题意,得,解得x15,经检验,x15是原方程的根,且符合题意;答:食品工厂一车间原计划安排了15名工人生产蛋黄肉粽【点睛】本题考查了分式方程的应用,表示出每名工人的生产效率并根据题意找出等量关系是解题
22、的关键25(1)a4+4a3b+6a2b2+4ab3+b4;(2)x3+6x2+12x+8【分析】(1)根据杨辉三角中系数的规律,写出展开式即可;(2)根据得出的系数规律,写出展开式即可.【详解】解析:(1)a4+4a3b+6a2b2+4ab3+b4;(2)x3+6x2+12x+8【分析】(1)根据杨辉三角中系数的规律,写出展开式即可;(2)根据得出的系数规律,写出展开式即可.【详解】解:(1)a4+4a3b+6a2b2+4ab3+b4,故答案为:a4+4a3b+6a2b2+4ab3+b4;(2)(x+2)3x3+6x2+12x+8,故答案为:x3+6x2+12x+8【点睛】本题考查了对完全平
23、方公式的应用,杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和26(1)10;证明见解析;(2),理由见解析;【分析】(1)利用可求出,即可求出;作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;(2)证明,得到,再利用等量代换证明解析:(1)10;证明见解析;(2),理由见解析;【分析】(1)利用可求出,即可求出;作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;(2)证明,得到,再利用等量代换证明;(1)解:由图可知,即,;作交AB与点C,交AB与点F,如图,在和中,即,即,(2)解:,理由如下:假设DE交BC于点G,有已知可
24、知:,且,在和中,【点睛】本题考查三角形全等的判定,等量代换,绝对值非负性的应用,直角坐标系中的图形,(1)的关键是证明,(2)的关键证明27(1)BD=CE,理由见解析;(2)90;(3)成立,理由见解析.【分析】(1)根据等腰直角三角形的性质得到AB=AC,BAD=EAC=90,AD=AE,利用“SAS”可证明ADB解析:(1)BD=CE,理由见解析;(2)90;(3)成立,理由见解析.【分析】(1)根据等腰直角三角形的性质得到AB=AC,BAD=EAC=90,AD=AE,利用“SAS”可证明ADBAEC,则BD=CE;(2)由ADBAEC得到ACE=DBA,利用三角形内角和定理可得到BF
25、C=180-ACE-CDF=180-DBA-BDA=DAB=90;(3)与(1)一样可证明ADBAEC,得到BD=CE,ACE=DBA,利用三角形内角和定理得到BFC=DAB=90【详解】(1)ABC、ADE是等腰直角三角形,AB=AC,BAD=EAC=90,AD=AE,在ADB和AEC中,ADBAEC(SAS),BD=CE;(2)ADBAEC,ACE=ABD,而在CDF中,BFC=180-ACE-CDF,又CDF=BDA,BFC=180-DBA-BDA=DAB=90;(3)BD=CE成立,且两线段所在直线互相垂直,即BFC=90理由如下:ABC、ADE是等腰直角三角形,AB=AC,AD=AE,BAC=EAD=90,BAC+CAD=EAD+CAD,BAD=CAE,在ADB和AEC中,ADBAEC(SAS),BD=CE,ACE=DBA,BFC=DAB=90【点睛】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的方法进行解答