资源描述
2024年人教版七7年级下册数学期末测试题附解析
一、选择题
1.如图,∠1和∠2不是同位角的是( )
A. B.
C. D.
2.把“笑脸”进行平移,能得到的图形是( )
A. B. C. D.
3.在平面直角坐标系中有四个点,,,.其中在第一象限的点是( ).
A. B. C. D.
4.下列四个命题,①连接两点的线段叫做两点间的距离;②经过两点有一条直线,并且只有一条直线;③两点之间,线段最短;④线段的延长线与射线是同一条射线.其中说法正确的有( )
A.1个 B.2个 C.3个 D.4个
5.如图,直线,点在直线上,下列结论正确的是( )
A. B.
C. D.
6.下列说法正确的是( )
A.64的平方根是8 B.-16的立方根是-4
C.只有非负数才有立方根 D.-3的立方根是
7.如图,将直尺与含45°角的三角尺叠放在一起,其两边与直尺相交,若∠1=25°,则∠2的度数为( )
A.120° B.135° C.150° D.160°
8.如图所示,已知点A(﹣1,2),将长方形ABOC沿x轴正方向连续翻转2021次,点A依次落在点A1,A2,A3,…,A2021的位置,则A2021的坐标是( )
A.(3038,1) B.(3032,1) C.(2021,0) D.(2021,1)
九、填空题
9.如果和互为相反数,那么________.
十、填空题
10.已知点与点关于轴对称,那么________.
十一、填空题
11.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=130°,∠C=30°,则∠DAE的度数是__________.
十二、填空题
12.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=_____°.
十三、填空题
13.如图1是的一张纸条,按图示方式把这一纸条先沿折叠并压平,再沿折叠并压平,若图3中,则图2中的度数为______.
十四、填空题
14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=.
例如:(-3)☆2= = 2.
从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是_____.
十五、填空题
15.已知点,且点到两坐标轴的距离相等,则点的坐标是____.
十六、填空题
16.如图,在平面直角坐标系中,轴,轴,点、、、在轴上,,,,,,把一条长为2021个单位长度且无弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标________.
十七、解答题
17.计算:
(1)
(2)
十八、解答题
18.求下列各式中的值
(1)
(2)
十九、解答题
19.补全下列推理过程:
如图,已知EF//AD,∠1=∠2,∠BAC=70°,求∠AGD.
解:∵EF//AD
∴∠2= ( )
又∵∠1=∠2( )
∴∠1=∠3( )
∴AB// ( )
∴∠BAC+ =180°( )
∵∠BAC=70°
∴∠AGD= .
二十、解答题
20.在平面坐标系中描出下列各点且标该点字母:
(1)点,,,;
(2)点在轴上,位于原点右侧,距离原点2个单位长度;
(3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度.
二十一、解答题
21.一个正数的两个平方根为和,是的立方根,的小数部分是,求的平方根.
二十二、解答题
22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线将它剪开后,重新拼成一个大正方形.
(1)基础巩固:拼成的大正方形的面积为______,边长为______;
(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的重合.以点B为圆心,边为半径画圆弧,交数轴于点E,则点E表示的数是______;
(3)变式拓展:
①如图4,给定的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图;
②请你利用①中图形在数轴上用直尺和圆规表示面积为13的正方形边长所表示的数.
二十三、解答题
23.如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.
(1)求证:∠CAB=∠MCA+∠PBA;
(2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE;
(3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数.
二十四、解答题
24.如图,,平分,设为,点E是射线上的一个动点.
(1)若时,且,求的度数;
(2)若点E运动到上方,且满足,,求的值;
(3)若,求的度数(用含n和的代数式表示).
二十五、解答题
25.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数;
(2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数;
(3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由.
【参考答案】
一、选择题
1.D
解析:D
【分析】
根据同位角的定义,“在两条被截直线的同方,截线的同侧的两个角,即为同位角”直接分析得出即可.
【详解】
解:A、∠1和∠2是同位角,故此选项不符合题意;
B、∠1和∠2是同位角,故此选项不符合题意;
C、∠1和∠2是同位角,故此选项不符合题意;
D、∠1和∠2不是同位角,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了同位角的定义,正确掌握同位角定义是解题关键.
2.D
【分析】
根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.
【详解】
解:观察图形可知图形进行平移,能得到图形D.
故选:D.
【点睛】
本题考查了图形的平移,图形的平移只改
解析:D
【分析】
根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.
【详解】
解:观察图形可知图形进行平移,能得到图形D.
故选:D.
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.
3.A
【分析】
根据各象限内点的坐标特征解答即可.
【详解】
解:在第一象限;
在第二象限;
在第三象限;
在第四象限;
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.
4.B
【分析】
利用直线和射线的定义、以及线段的性质和两点之间距离意义,分别分析得出答案.
【详解】
解:①连接两点的线段长度叫做两点间的距离,故此选项错误.
②经过两点有一条直线,并且只有一条直线,故此选项正确.
③两点之间,线段最短,故此选项正确.
④线段的延长线是以B为端点延长出去的延长线部分,与射线不是同一条射线故此选项错误.
综上,②③正确.
故选:B.
【点睛】
本题考查了直线、射线、线段的性质和两点之间距离意义,解题的关键是准确理解定义.
5.D
【分析】
根据两直线平行,同旁内角互补可得∠1+∠AOF=180°,再根据两直线平行,内错角相等可得∠3=∠AOC,而通过∠AOF=∠AOC-∠2,整理可得∠1+∠3-∠2=180°.
【详解】
解:∵AB∥EF,
∴∠1+∠AOF=180°,
∵CD∥AB,
∴∠3=∠AOC,
又∵∠AOF=∠AOC−∠2=∠3-∠2,
∴∠1+∠3-∠2=180°.
故选:D.
【点睛】
本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.
6.D
【分析】
根据平方根和立方根的定义逐项判断即可得.
【详解】
A、64的平方根是,则此项说法错误,不符题意;
B、因为 ,所以的立方根不是,此项说法错误,不符题意;
C、任何实数都有立方根,则此项说法错误,不符题意;
D、因为,所以的立方根是,此项说法正确,符合题意;
故选:D.
【点睛】
本题考查了平方根和立方根,熟练掌握定义是解题关键.
7.D
【分析】
如图,利用三角形的外角的性质求出∠3,再利用平行线的性质可得结论.
【详解】
解:如图,
∵∠4=45°,∠1=25°,∠4=∠1+∠3,
∴∠3=45°-25°=20°,
∵a∥b,
∴∠2+∠3=180°,
∴∠2=180°-20°=160°,
故选:D.
【点睛】
本题考查三角形外角的性质,平行线的性质等知识,解题的关键是学会添加常用辅助线,利用平行线的性质解决问题.
8.B
【分析】
观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,
解析:B
【分析】
观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,利用周期变化规律即可求解.
【详解】
解:由题意A1(2,1),A2(3,0),A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,
∵2021÷4=505.....1,
∴A2021的纵坐标与A1相同, 横坐标=505×6+2=3032,
∴A2021(3032,1),
故选B.
【点睛】
本题主要考查坐标与图形的变化规律型问题,解题的关键是学会探究规律的方法.
九、填空题
9.-2
【分析】
利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案.
【详解】
解:∵和|y-2|互为相反数,
∴,
∴x+1=0,y-2=0,
解得:x=-1,y=2,
∴xy
解析:-2
【分析】
利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案.
【详解】
解:∵和|y-2|互为相反数,
∴,
∴x+1=0,y-2=0,
解得:x=-1,y=2,
∴xy=-1×2=-2
故答案为:-2.
【点睛】
本题考查了绝对值和平方数的非负性.互为相反数的两个数相加等于0,和|y-2|都是非负数,所以这个数都是0.
十、填空题
10.0;
【分析】
平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可.
【详解】
解:根据对称的性质,得,
解得.
故答案为:0.
【点睛】
考查了关于轴、轴对称的点的坐标,
解析:0;
【分析】
平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可.
【详解】
解:根据对称的性质,得,
解得.
故答案为:0.
【点睛】
考查了关于轴、轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆.
十一、填空题
11.5°
【分析】
根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解.
【详解】
∵AD⊥BC,∠C=30°,
∴∠C
解析:5°
【分析】
根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解.
【详解】
∵AD⊥BC,∠C=30°,
∴∠CAD=90°-30°=60°,
∵AE是△ABC的角平分线,∠BAC=130°,
∴∠CAE=∠BAC=×130°=65°,
∴∠DAE=∠CAE-∠CAD=65°-60°=5°.
故答案为:5°.
【点睛】
本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.
十二、填空题
12.70
【分析】
根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.
【详解】
∵DE∥AC,
∴∠C=∠1=70°,
∵AF∥BC,
∴∠2=∠C=70°.
故答
解析:70
【分析】
根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.
【详解】
∵DE∥AC,
∴∠C=∠1=70°,
∵AF∥BC,
∴∠2=∠C=70°.
故答案为70.
【点睛】
本题考查了平行线的性质,熟记性质并准确识图是解题的关键.
十三、填空题
13.113°
【分析】
如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定
解析:113°
【分析】
如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定义可计算出x=67°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=113°,所以∠AEF=113°.
【详解】
解:如图,设∠B′FE=x,
∵纸条沿EF折叠,
∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,
∴∠BFC=∠BFE﹣∠CFE=x﹣21°,
∵纸条沿BF折叠,
∴∠C′FB=∠BFC=x﹣21°,
而∠B′FE+∠BFE+∠C′FE=180°,
∴x+x+x﹣21°=180°,解得x=67°,
∵A′D′∥B′C′,
∴∠A′EF=180°﹣∠B′FE=180°﹣67°=113°,
∴∠AEF=113°.
故答案为113°.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.
十四、填空题
14.8
【解析】
解:当a>b时,a☆b= =a,a最大为8;
当a<b时,a☆b==b,b最大为8,故答案为:8.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
解析:8
【解析】
解:当a>b时,a☆b= =a,a最大为8;
当a<b时,a☆b==b,b最大为8,故答案为:8.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
十五、填空题
15.或;
【分析】
根据点A到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.
【详解】
解:∵点A到两坐标轴的距离相等,且点A为,
∴,
∴或,
解得:或,
∴点A的坐标为:或;
故答案为:或
解析:或;
【分析】
根据点A到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.
【详解】
解:∵点A到两坐标轴的距离相等,且点A为,
∴,
∴或,
解得:或,
∴点A的坐标为:或;
故答案为:或;
【点睛】
本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.
十六、填空题
16.【分析】
先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题.
【详解】
解:,,,,,
∴,
“凸”形的周长为20,
又∵的余数为1,
细线另一端所在位置的点在的中点处,坐标为.
故
解析:
【分析】
先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题.
【详解】
解:,,,,,
∴,
“凸”形的周长为20,
又∵的余数为1,
细线另一端所在位置的点在的中点处,坐标为.
故答案为:.
【点睛】
本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.
十七、解答题
17.(1);(2)-5.
【分析】
(1)直接利用算术平方根以及立方根的定义化简得出答案;
(2)直接利用算术平方根以及立方根的定义化简得出答案.
【详解】
(1)
=1+-2
=
(2)
=3-4+
解析:(1);(2)-5.
【分析】
(1)直接利用算术平方根以及立方根的定义化简得出答案;
(2)直接利用算术平方根以及立方根的定义化简得出答案.
【详解】
(1)
=1+-2
=
(2)
=3-4+1-5
=-5
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
十八、解答题
18.(1);(2)
【分析】
(1)先移项,再根据平方根的性质开平方即可得;
(2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得.
【详解】
解:(1)
∴
即
(2)
解得,
解析:(1);(2)
【分析】
(1)先移项,再根据平方根的性质开平方即可得;
(2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得.
【详解】
解:(1)
∴
即
(2)
解得,
【点睛】
本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的性质.
十九、解答题
19.∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°
【分析】
根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得
解析:∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°
【分析】
根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB//DG,根据平行线的性质推出∠BAC+∠AGD=180°,代入求出即可求得∠AGD.
【详解】
解:∵EF//AD,
∴∠2=∠3(两直线平行,同位角相等),
又∵∠1=∠2(已知),
∴∠1=∠3(等量代换),
∴AB//DG,(内错角相等,两直线平行)
∴∠BAC+∠AGD=180°,(两直线平行,同旁内角互补)
∵∠BAC=70°,
∴∠AGD=110°
故答案为:∠3,两直线平行,同位角相等,已知,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补;110°.
【点睛】
本题考查了平行线的性质和判定的应用,能正确根据平行线的性质和判定定理进行推理是解此题的关键.
二十、解答题
20.(1)见解析;(2)见解析;(3)见解析
【分析】
(1)直接在平面直角坐标系内描出各点即可;
(2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可;
(3)根据题意确定点 的坐标,然后
解析:(1)见解析;(2)见解析;(3)见解析
【分析】
(1)直接在平面直角坐标系内描出各点即可;
(2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可;
(3)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可.
【详解】
解:(1)如图 ,
(2)∵点在轴上,位于原点右侧,距离原点2个单位长度,
∴点 ;
(3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度,
∴点 .
【点睛】
本题主要考查了平面直角坐标系内点的坐标,正确把握点的坐标的性质是解题的关键.
二十一、解答题
21.【分析】
根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案.
【详解】
∵一个正数的两个平方根为和,
∴,
解得:,
∵是的立方根,
∴,
解得:,
∵,
解析:
【分析】
根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案.
【详解】
∵一个正数的两个平方根为和,
∴,
解得:,
∵是的立方根,
∴,
解得:,
∵,
∴的整数部分是6,则小数部分是:,
∴,
∴的平方根为:.
【点睛】
本题考查了平方根的性质,立方根的定义,估算无理数的大小,解题的关键是正确理解平方根的定义以及“夹逼法”的运用.
二十二、解答题
22.(1)10,;(2);(3)见解析;(4)见解析
【分析】
(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;
(2)根据大正方形的边长结合实
解析:(1)10,;(2);(3)见解析;(4)见解析
【分析】
(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;
(2)根据大正方形的边长结合实数与数轴的关系可得结果;
(3)以2×3的长方形的对角线为边长即可画出图形;
(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.
【详解】
解:(1)∵图1中有10个小正方形,
∴面积为10,边长AD为;
(2)∵BC=,点B表示的数为-1,
∴BE=,
∴点E表示的数为;
(3)①如图所示:
②∵正方形面积为13,
∴边长为,
如图,点E表示面积为13的正方形边长.
【点睛】
本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.
二十三、解答题
23.(1)证明见解析;(2)证明见解析;(3)120°.
【分析】
(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;
(2)
解析:(1)证明见解析;(2)证明见解析;(3)120°.
【分析】
(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;
(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;
(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.
【详解】
解:(1)证明:如图1,过点A作AD∥MN,
∵MN∥PQ,AD∥MN,
∴AD∥MN∥PQ,
∴∠MCA=∠DAC,∠PBA=∠DAB,
∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,
即:∠CAB=∠MCA+∠PBA;
(2)如图2,∵CD∥AB,
∴∠CAB+∠ACD=180°,
∵∠ECM+∠ECN=180°,
∵∠ECN=∠CAB
∴∠ECM=∠ACD,
即∠MCA+∠ACE=∠DCE+∠ACE,
∴∠MCA=∠DCE;
(3)∵AF∥CG,
∴∠GCA+∠FAC=180°,
∵∠CAB=60°
即∠GCA+∠CAB+∠FAB=180°,
∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,
由(1)可知,∠CAB=∠MCA+∠ABP,
∵BF平分∠ABP,CG平分∠ACN,
∴∠ACN=2∠GCA,∠ABP=2∠ABF,
又∵∠MCA=180°﹣∠ACN,
∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,
∴∠GCA﹣∠ABF=60°,
∵∠AFB+∠ABF+∠FAB=180°,
∴∠AFB=180°﹣∠FAB﹣∠FBA
=180°﹣(120°﹣∠GCA)﹣∠ABF
=180°﹣120°+∠GCA﹣∠ABF
=120°.
【点睛】
本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.
二十四、解答题
24.(1)60°;(2)50°;(3)或
【分析】
(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;
(2)根据题意画出图形,先
解析:(1)60°;(2)50°;(3)或
【分析】
(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;
(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;
(3)根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,,列出等量关系求解即可等处结论;②若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论.
【详解】
解:(1),,
,
平分,
,
,
又,
;
(2)根据题意画图,如图1所示,
,,
,
,
,
,
又平分,
,
;
(3)①如图2所示,
,
,
平分,
,
,
又,
,
,
解得;
②如图3所示,
,
,
平分,
,
,
又,
,
,
解得.
综上的度数为或.
【点睛】
本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键.
二十五、解答题
25.(1)∠E=45°;(2)∠E=;(3)不变化,
【分析】
(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠
解析:(1)∠E=45°;(2)∠E=;(3)不变化,
【分析】
(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,则可得∠E= (∠D+∠B),继而求得答案;
(2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案.
(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案.
【详解】
解:(1)∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,
∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,
∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB
∴∠D+∠B=2∠E,
∴∠E=(∠D+∠B),
∵∠ADC=50°,∠ABC=40°,
∴∠AEC= ×(50°+40°)=45°;
(2)延长BC交AD于点F,
∵∠BFD=∠B+∠BAD,
∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,
∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,
∵∠E+∠ECB=∠B+∠EAB,
∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD
=∠B+∠BAE-(∠B+∠BAD+∠D)
= (∠B-∠D),
∠ADC=α°,∠ABC=β°,
即∠AEC=
(3)的值不发生变化,
理由如下:
如图,记与交于,与交于,
①,
②,
①-②得:
AD平分∠BAC,
【点睛】
此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.
展开阅读全文