1、2024年人教版中学七7年级下册数学期末测试题附答案一、选择题1如图,直线 a、b 被直线 c 所截,下列说法不正确的是 ( ) A1 和4 是内错角B2 和3 是同旁内角C1 和3 是同位角D3 和4 互为邻补角2如图,ABC沿BC所在直线向右平移得到DEF,已知EC2,BF8,则平移的距离为( )A3B4C5D63下列各点中,在第四象限的是( )ABCD4下列命题是假命题的是( )A同一平面内,两直线不相交就平行B对顶角相等C互为邻补角的两角和为180D相等的两个角一定是对顶角5为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的
2、数学问题:已知ABCD,EAB80,则E的度数是( )A30B40C60D706小雪在作业本上做了四道题目:3;4;9;-6,她做对了的题目有()A1道B2道C3道D4道7如图,AB/CD,ADAC,ACD53,则BAD的度数为()A53B47C43D378如图,按此规律,点的坐标为( )ABCD九、填空题9已知实数x,y满足+(y+1)2=0,则x-y的立方根是_十、填空题10小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_.十一、填空题11如图,分别作和的角平分线交于点,称为第一次操作,则_;接着作和的角平分线交于,称为第二次操作,继续作和的角平分线交于,称方第三次操作,如此一直操
3、作下去,则_十二、填空题12如图,已知AB/EF,B=40,E=30,则C-D的度数为_十三、填空题13把一张长方形纸条按如图所示折叠后,若,则_;十四、填空题14已知a,b为两个连续的整数,且,则的平方根为_十五、填空题15如图,直线经过原点,点在轴上,于若A(4,0),B(m,3),C(n,-5),则_十六、填空题16如图,在平面直角坐标系中,边长为1的等边OA1A2的一条边OA2在x的正半轴上,O为坐标原点;将OA1A2沿x轴正方向依次向右移动2个单位,依次得到A3A4A5,A6A7A8,则顶点A2021的坐标为 _十七、解答题17计算: (1) (2)十八、解答题18求下列各式中的值:
4、(1);(2)十九、解答题19按逻辑填写步骤和理由,将下面的证明过程补充完整如图,点在直线上,点、在直线上,且,点在线段上,连接,且平分求证:证明:( )( ) (平角定义)平分(已知) ( )( )(已知) ( )(等量代换)二十、解答题20在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上,(1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(2,1),(1,1),并写出点B的坐标;(2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形ABC,请在图中画出平移后的三角形ABC,并分别写出
5、点A,B,C的坐标二十一、解答题21阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而2,于是可用来表示的小数部分请解答下列问题: (1)的整数部分是_,小数部分是_;(2)如果的小数部分为的整数部分为求的值二十二、解答题22(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_;(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_(填“”或“”或“”号);(3)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,
6、他能裁出吗?请说明理由?二十三、解答题23如图1,把一块含30的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上(1)根据图1填空:1 ,2 ;(2)现把三角板绕B点逆时针旋转n如图2,当n25,且点C恰好落在DG边上时,求1、2的度数;当0n180时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由二十四、解答题24已知:三角形ABC和三角形DEF位于直线MN的两侧中,直线MN经过点C,且,其中,点E、F均落在直线MN上(1)如图1,当点C与点E重合时,求证:;聪明的小丽过点C作,并利用
7、这条辅助线解决了问题请你根据小丽的思考,写出解决这一问题的过程(2)将三角形DEF沿着NM的方向平移,如图2,求证:;(3)将三角形DEF沿着NM的方向平移,使得点E移动到点,画出平移后的三角形DEF,并回答问题,若,则_(用含的代数式表示)二十五、解答题25操作示例:如图1,在ABC中,AD为BC边上的中线,ABD的面积记为S1,ADC的面积记为S2则S1=S2解决问题:在图2中,点D、E分别是边AB、BC的中点,若BDE的面积为2,则四边形ADEC的面积为 .拓展延伸:(1)如图3,在ABC中,点D在边BC上,且BD=2CD,ABD的面积记为S1,ADC的面积记为S2则S1与S2之间的数量
8、关系为 (2)如图4,在ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若BOC的面积为3,则四边形ADOE的面积为 .【参考答案】一、选择题1A解析:A【分析】同位角:两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角;内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【详解】解:A、和不是内错角,此选项符合题意; B、和是同旁内角,此选项不符合题意;C、和是同位角,此选项不符合题意; D、和是邻补角
9、,此选项不符合题意;故选A【点睛】本题主要考查了同位角,同旁内角,内错角,邻补角,理解同位角,内错角和同旁内角和邻补角的定义是关键2A【分析】根据平移的性质证明BECF即可解决问题【详解】解:由平移的性质可知,BCEF,BECF,BF8,EC2,BE+CF826,CFBE3,故选:解析:A【分析】根据平移的性质证明BECF即可解决问题【详解】解:由平移的性质可知,BCEF,BECF,BF8,EC2,BE+CF826,CFBE3,故选:A【点睛】本题考查平移的性质,掌握平移的性质是解题的关键3B【分析】根据第四象限的点的横坐标是正数,纵坐标是负数解答【详解】解:A、(3,0)在x轴上,不合题意;
10、B、(2,-5)在第四象限,符合题意;C、(-5,-2)在第三象限,不合题意;D、(-2,3),在第二象限,不合题意故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4D【分析】根据相交线、对顶角以及邻补角的有关性质对选项逐个判断即可【详解】解:A:同一平面内,两条不相交的直线平行,选项正确,不符合题意;B:对顶角相等,选项正确,不符合题意;C:互为邻补角的两角和为180,选项正确,不符合题意;D:相等的两个角不一定是对顶角,选项错误,符合题意;故
11、答案选D【点睛】此题主要考查了相交线、对顶角以及邻补角的有关性质,熟练掌握相关基本性质是解题的关键5A【分析】过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得【详解】解:如图,过点作,故选:A【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键6A【分析】依据立方根、平方根算术平方根的定义求解即可【详解】=-3,故正确;=4,故错误;=3,故错误;=6,故错误故选:A.【点睛】此题考查立方根,算术平方根和平方根,掌握运算法则是解题关键7D【分析】因为ADAC,所以CAD90由AB/CD,得BAC180ACD,进而求得BAD的度数【详解
12、】解:AB/CD,ACD+BAC180CAB180ACD18053127又ADAC,CAD90BADCABCAD1279037故选:D【点睛】本题考查了平行线的性质,垂线的定义,掌握平行线的性质是解题的关键8C【分析】经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象解析:C【分析】经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象限
13、的点A2(1,1),A6(2,2),A10(3,3)观察易得到点的坐标=【详解】解:由题可知第一象限的点:A2,A6,A10角标除以4余数为2;第二象限的点:A3,A7,A11角标除以4余数为3;第三象限的点:A4,A8,A12角标除以4余数为0;第四象限的点:A5,A9,A13角标除以4余数为1;由上规律可知:20224=5052点A2022在第一象限观察图形,可知:点A2的坐标为(1,1),点A6的坐标为(2,2),点A10的坐标为(3,3),第一象限点的横纵坐标数字隐含规律:点的坐标=(n为角标)点A4n-2的坐标为(,)(n为正整数),点A2022的坐标为(506,506)故选C【点睛
14、】本题考查了点的坐标正方形为单位格点变化规律,反应出点的坐标变化从特殊到一般再到特殊规律计算方法,同时也体现出第一象限点的横纵坐标数字隐含规律:点的坐标=(n为角标)求解九、填空题9【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是【点睛】本题考查的是解析:【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是【点睛】本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这
15、几个非负数都为0是解题的关键十、填空题1021:05.【分析】利用镜面对称的性质求解镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所解析:21:05.【分析】利用镜面对称的性质求解镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05故答案为21:05【点睛】本题考查镜面反射的原理与性质解决此类题应认真观察,注意技巧十一、填空题1190 【分析】过P1作P1QAB,则P1QCD,根据平
16、行线的性质得到AEF+CFE=180,AEP1=EP1Q,CFP1=FP1Q,结合角平分线的定义可计算E解析:90 【分析】过P1作P1QAB,则P1QCD,根据平行线的性质得到AEF+CFE=180,AEP1=EP1Q,CFP1=FP1Q,结合角平分线的定义可计算EP1F,再同理求出P2,P3,总结规律可得【详解】解:过P1作P1QAB,则P1QCD,ABCD,AEF+CFE=180,AEP1=EP1Q,CFP1=FP1Q,和的角平分线交于点,EP1F=EP1Q+FP1Q=AEP1+CFP1=(AEF+CFE)=90;同理可得:P2=(AEF+CFE)=45,P3=(AEF+CFE)=22.
17、5,.,故答案为:90,【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解十二、填空题1210【分析】过点C作CGAB,过点D作DHEF,根据平行线的性质可得ABCGDHEF,从而可得BCG=B=40,EDH=E=30,DCG=CDH,即可求解【详解】解析:10【分析】过点C作CGAB,过点D作DHEF,根据平行线的性质可得ABCGDHEF,从而可得BCG=B=40,EDH=E=30,DCG=CDH,即可求解【详解】解:如图,过点C作CGAB,过点D作DHEF,AB/EF,ABCGDHEF,B=40,E=3
18、0,BCG=B=40,EDH=E=30,DCG=CDH,BCD-CDE=BCG-EDH=40-30=10故答案为:10【点睛】本题主要考查了平行线的性质,准确作出辅助线是解题的关键十三、填空题1355【分析】直接根据补角的定义可知AOB+BOG+BOG=180,再由图形翻折变换的性质可知BOG=BOG,再由平行线的性质可得出结论【详解】解:AOB=70,解析:55【分析】直接根据补角的定义可知AOB+BOG+BOG=180,再由图形翻折变换的性质可知BOG=BOG,再由平行线的性质可得出结论【详解】解:AOB=70,AOB+BOG+BOG=180,BOG+BOG=180-70=110BOG由B
19、OG翻折而成,BOG=BOG,BOG= =55ABCD,OGD=BOG=55故答案为:55【点睛】本题考查的是平行线的性质,熟知图形翻折不变性的性质是解答此题的关键十四、填空题143【分析】分别算出a,b计算即可;【详解】a,b为两个连续的整数,且,的平方根为3;故答案是:3【点睛】本题主要考查了无理数的估算和求一个数的平解析:3【分析】分别算出a,b计算即可;【详解】a,b为两个连续的整数,且,的平方根为3;故答案是:3【点睛】本题主要考查了无理数的估算和求一个数的平方根,准确计算是解题的关键十五、填空题15【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BCAD
20、=32【详解】解:过B作BEx轴于E,过C作CFy轴于F,B(m,3),BE=3,A解析:【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BCAD=32【详解】解:过B作BEx轴于E,过C作CFy轴于F,B(m,3),BE=3,A(4,0),AO=4,C(n,-5),OF=5,SAOB=AOBE=43=6,SAOC=AOOF=45=10,SAOB+SAOC=6+10=16,SABC=SAOB+SAOC,BCAD=16,BCAD=32,故答案为:32【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法
21、求出线段的积十六、填空题16(1346.5,)【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标【详解】解:是等边三角形,边长为1,观察图形可知,3个点一个循解析:(1346.5,)【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标【详解】解:是等边三角形,边长为1,观察图形可知,3个点一个循环,每个循环向右移动2个单位202136731,67321346,故顶点A2021的坐标是(1346.5,)故答案为:(1346.5,)【点睛】本题考查了平面直角坐标系点的规律,等边三角形的性质,勾股定理,找到规律是解题的
22、关键十七、解答题17(1) 3;(2) 2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果【详解】解:(1解析:(1) 3;(2) 2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果【详解】解:(1)原式=-(2-4)6+3=+ +3=3;(2)原式= = 故答案为:(1)3;(2) 【点睛】本题考查实数的运算,熟练掌握运算法则是解题的关键十八、解答题18(1);(2)【分析】(1)方程整理后,利用开
23、平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解【详解】解:(1)移项得,解析:(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解【详解】解:(1)移项得,开方得,;(2)移项得,合并同类项得,开立方得,【点睛】此题考查了立方根,以及平方根,熟练掌握各自的性质是解题关键十九、解答题19已知;垂直定义;2;角平分线定义;等角的余角相等;两直线平行,内错角相等【分析】根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题
24、【详解】证明:ABAC(已知),解析:已知;垂直定义;2;角平分线定义;等角的余角相等;两直线平行,内错角相等【分析】根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题【详解】证明:ABAC(已知),BAC=90(垂直的定义),2+3=90,1+4+BAC=180(平角定义),1+4=180-BAC=90,AC平分DAF(已知),1=2(角平分线的定义),3=4(等角的余角相等),ab(已知),4=5(两直线平行,内错角相等),3=5(等量代换)故答案为:已知;垂直定义;90;2;角平分线定义;等角的余角相等;5;两直线平行,内错角相等【点睛】本题考查了垂直的定义、角平分线的定义、
25、平行线的性质和余角的定义,解题的关键是要找准线和对应的角,不能弄混淆二十、解答题20(1)坐标系见解析,B(0,1);(2)画图见解析,A(2,1),B(4,3),C(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可(解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A(2,1),B(4,3),C(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可(2)分别作出A,B,C即可解决问题【详解】解:(1)平面直角坐标系如图所示:B(0,1)(2)ABC如图所示A(2,1),B(4,3),C(5
26、,1)【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型二十一、解答题21(1)5;-5(2)0【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可【详解】(1)56,的整数部分是5,小数部分是-5,故解析:(1)5;-5(2)0【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可【详解】(1)56,的整数部分是5,小数部分是-5,故答案为:5;-5;(2)34,a-3,34,b3,-3+3-=0【点睛】本题考查了估算无理数的大小,能估算出、的范围是解此
27、题的关键二十二、解答题22(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形解析:(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)小正方形的边长为1cm,小正方形的面积为1cm2,两个小正方形的面
28、积之和为2cm2,即所拼成的大正方形的面积为2 cm2,大正方形的边长为cm,(2),设正方形的边长为a,故答案为:;(3)解:不能裁剪出,理由如下:长方形纸片的长和宽之比为,设长方形纸片的长为,宽为,则,整理得:,450400,长方形纸片的长大于正方形的边长,不能裁出这样的长方形纸片【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查二十三、解答题23(1)120,90;(2)1=120-n,2=90+n;见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)根据邻补角的定义求出ABE,再根据两直线平行,同位角相解析:(1)120,90
29、;(2)1=120-n,2=90+n;见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)根据邻补角的定义求出ABE,再根据两直线平行,同位角相等可得1=ABE,根据两直线平行,同旁内角互补求出BCG,然后根据周角等于360计算即可得到2;结合图形,分AB、BC、AC三条边与直尺垂直讨论求解【详解】解:(1)1=180-60=120,2=90;故答案为:120,90;(2)如图2,ABC=60,ABE=180-60-n=120-n,DGEF, 1=ABE=120-n,BCG=180-CBF=180-n,ACB+BCG+2=360,2=360-ACB-BCG=360-90-(180-n
30、)=90+n;当n=30时,ABC=60,ABF=30+60=90,ABDG(EF);当n=90时,C=CBF=90,BCDG(EF),ACDE(GF);当n=120时,ABDE(GF)【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键二十四、解答题24(1)见解析;(2)见解析;(3)见解析;【分析】(1)过点C作,得到,再根据,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据()结论得到D解析:(1)见解析;(2)见解析;(3)见解析;【分析】(1)过点C作,得到,再根据,得到,
31、进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据()结论得到DEF=ECA=,进而得到,根据三角形内角和即可求解【详解】解:(1)过点C作, , ,; (2)解:,又,;(3)如图三角形DEF即为所求作三角形 ,由(2)得,DEAC,DEF=ECA=,ACB=, ,A=180-=故答案为为:【点睛】本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键二十五、解答题25解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到SADE=SBDE,SABE=S
32、AEC,从而得到结论;拓展延伸:(1)解析:解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到SADE=SBDE,SABE=SAEC,从而得到结论;拓展延伸:(1)作ABD的中线AE,则有BE=ED=DC,从而得到ABE的面积=AED的面积=ADC的面积,由此即可得到结论;(2)连接AO则可得到BOD的面积=BOC的面积,AOC的面积=AOD的面积,EOC的面积=BOC的面积的一半, AOB的面积=2AOE的面积设AOD的面积=a,AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论试题解析:解:解决问题
33、连接AE点D、E分别是边AB、BC的中点,SADE=SBDE,SABE=SAECSBDE =2,SADE =2,SABE=SAEC=4,四边形ADEC的面积=2+4=6拓展延伸:解:(1)作ABD的中线AE,则有BE=ED=DC,ABE的面积=AED的面积=ADC的面积= S2,S1=2S2(2)连接AOCO=DO,BOD的面积=BOC的面积=3,AOC的面积=AOD的面积BO=2EO,EOC的面积=BOC的面积的一半=1.5, AOB的面积=2AOE的面积设AOD的面积=a,AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,四边形ADOE的面积为=a+b=6+4.5=10.5