资源描述
2022年人教版七7年级下册数学期末测试题(含解析)
一、选择题
1.下列事件中,不是必然事件的是( )
A.同旁内角互补 B.对顶角相等
C.等腰三角形是轴对称图形 D.垂线段最短
2.下列各组图形可以通过平移互相得到的是( )
A. B.
C. D.
3.点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题是假命题的是( ).
A.同一平面内,两直线不相交就平行 B.对顶角相等
C.互为邻补角的两角和为180° D.相等的两个角一定是对顶角
5.如图,直线,,则的度数为( )
A. B. C. D.
6.如果≈1.333,≈2.872,那么约等于( )
A.28.72 B.0.2872 C.13.3 D.0.1333
7.如图,,分别交,于点,,若,则的度数为( )
A. B. C. D.
8.如图,在平面直角坐标系中,点A1,A2,A3,A4,A5,A6的坐标依次为A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…按此规律排列,则点A2021的坐标是( )
A. B. C. D.
九、填空题
9.算术平方根等于本身的实数是__________.
十、填空题
10.已知点在第四象限,,则点A关于y轴对称的坐标是__________.
十一、填空题
11.如图,已知//,,∠和∠的角平分线交于点F,∠=__________°.
十二、填空题
12.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=72°,则∠AED′=__.
十三、填空题
13.如图,沿折痕折叠长方形,使C,D分别落在同一平面内的,处,若,则的大小是_______.
十四、填空题
14.实数a、b在数轴上所对应的点如图所示,则|﹣b|+|a+|+的值_____.
十五、填空题
15.已知点位于第一象限,到轴的距离为2,到轴的距离为5,则点的坐标为____.
十六、填空题
16.在平面直角坐标系中,对于点我们把叫做点P的伴随点,已知的伴随点为,点的伴随点为,点的伴随点为,这样依次得到,若点的坐标为,则点的坐标为_______
十七、解答题
17.计算下列各式的值:
(1)
(2)
十八、解答题
18.求下列各式中的值:
(1);
(2).
十九、解答题
19.已知:,,垂足分别为B,D,,
求证:,
请你将证明过程补充完整.
证明:∵,,垂足分别为B,D(已知).
∴(垂直定义).
∴______________∥______________()
∴______________()
又∵(已知)
∴∠2=(),
∴______________∥______________()
∴()
二十、解答题
20.三角形ABC在平面直角坐标系中的位置如图所示,点为坐标原点,,,.
(1)将向右平移4个单位长度得到,画出平移后的;
(2)将向下平移5个单位长度得到,画出平移后的;
(3)直接写出三角形的面积为______平方单位.(直接写出结果)
二十一、解答题
21.(阅读材料)
∵,即23,∴11<2,∴1的整数部分为1,∴1的小数部分为2
(解决问题)
(1)填空:的小数部分是 ;
(2)已知a是4的整数部分,b是4的小数部分,求代数式(﹣a)3+(b+4)2的值.
二十二、解答题
22.有一块正方形钢板,面积为16平方米.
(1)求正方形钢板的边长.
(2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由.(参考数据:,).
二十三、解答题
23.已知,,.
(1)如图1,求证:;
(2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数.
二十四、解答题
24.已知:直线∥,A为直线上的一个定点,过点A的直线交 于点B,点C在线段BA的延长线上.D,E为直线上的两个动点,点D在点E的左侧,连接AD,AE,满足∠AED=∠DAE.点M在上,且在点B的左侧.
(1)如图1,若∠BAD=25°,∠AED=50°,直接写出ÐABM的度数 ;
(2)射线AF为∠CAD的角平分线.
① 如图2,当点D在点B右侧时,用等式表示∠EAF与∠ABD之间的数量关系,并证明;
② 当点D与点B不重合,且∠ABM+∠EAF=150°时,直接写出∠EAF的度数 .
二十五、解答题
25.(生活常识)
射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .
(现象解释)
如图 2,有两块平面镜 OM,ON,且 OM⊥ON,入射光线 AB 经过两次反射,得到反射光线 CD.求证 AB∥CD.
(尝试探究)
如图 3,有两块平面镜 OM,ON,且∠MON =55° ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于点 E,求∠BEC 的大小.
(深入思考)
如图 4,有两块平面镜 OM,ON,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,∠BED=β , α 与 β 之间满足的等量关系是 .(直接写出结果)
【参考答案】
一、选择题
1.A
解析:A
【分析】
必然事件是指在一定条件下,一定发生的事件,即发生的概率是1的事件,据此判断即可解答.
【详解】
解:A、不是必然事件,当前提条件是两直线平行时,才会得到同旁内角互补,符合题意;
B、为必然事件,不合题意;
C、为必然事件,不合题意;
D、为必然事件,不合题意.
故选A.
【点睛】
本题考查了必然事件的定义,同时也考查了同旁内角,对顶角的性质,等腰三角形的性质,垂线段的性质.必然事件是指在一定条件下,一定发生的事件,即发生的概率是1的事件.
2.C
【分析】
根据平移不改变图形的形状和大小,进而得出答案.
【详解】
解:观察图形可知选项C中的图案通过平移后可以得到.
故选:C.
【点睛】
本题考查了图形的平移,正确掌握平移的性质是解题关键.
解析:C
【分析】
根据平移不改变图形的形状和大小,进而得出答案.
【详解】
解:观察图形可知选项C中的图案通过平移后可以得到.
故选:C.
【点睛】
本题考查了图形的平移,正确掌握平移的性质是解题关键.
3.C
【分析】
根据平面直角坐标系象限的符合特点可直接进行排除选项.
【详解】
解:在平面直角坐标系中,第一象限的符合为“+、+”,第二象限的符合为“-、+”;第三象限的符合为“-、-”,第四象限的符合为“+、-”,由此可得点在第三象限;
故选C.
【点睛】
本题主要考查平面直角坐标系中象限的符合特点,熟练掌握平面直角坐标系中象限的符合特点是解题的关键.
4.D
【分析】
根据相交线、对顶角以及邻补角的有关性质对选项逐个判断即可.
【详解】
解:A:同一平面内,两条不相交的直线平行,选项正确,不符合题意;
B:对顶角相等,选项正确,不符合题意;
C:互为邻补角的两角和为180°,选项正确,不符合题意;
D:相等的两个角不一定是对顶角,选项错误,符合题意;
故答案选D.
【点睛】
此题主要考查了相交线、对顶角以及邻补角的有关性质,熟练掌握相关基本性质是解题的关键.
5.B
【分析】
记∠1顶点为A,∠2顶点为B,∠3顶点为C,过点B作BD∥l1,由平行线的性质可得∠3+∠DBC=180°,∠ABD+(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果.
【详解】
如图,过点B作BD∥l1,
∵,
∴BD∥l1∥l2,
∴∠3+∠DBC=180°,∠ABD+(180°-∠1)=180°,
∴∠3+∠DBC+∠ABD+(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°,
又∵∠2+∠3=216°,
∴216°+(180°-∠1)=360°,
∴∠1=36°.
故选:B.
【点睛】
本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键.
6.C
【分析】
根据立方根的变化特点和给出的数据进行解答即可.
【详解】
解:∵≈1.333,
∴,
故选:C.
【点睛】
本题考查了立方根,如果一个数扩大1000倍,它的立方根就扩大10倍,如果一个数缩小1000倍,它的立方根缩小10倍.
7.B
【分析】
根据平行线的性质和对顶角相等即可得∠2的度数.
【详解】
解:∵,
∴∠2=∠FHD,
∵∠FHD=∠1=39°,
∴∠2=39°.
故选:B.
【点睛】
本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.
8.A
【分析】
根据图象可得移动4次图象完成一个循环,找规律得出的坐标,再确定的坐标,从而可得出点A2021的坐标.
【详解】
解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5
解析:A
【分析】
根据图象可得移动4次图象完成一个循环,找规律得出的坐标,再确定的坐标,从而可得出点A2021的坐标.
【详解】
解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,
∴的横坐标为2,纵坐标为0,
的横坐标为,纵坐标为0,
……
以此类推,
的横坐标为,纵坐标为0,
∵,
∴的坐标为,
∴的坐标为
故选:A.
【点睛】
本题考查了点的坐标变化规律,解答本题的关键是仔细观察图形,得到点的坐标变化规律.
九、填空题
9.0或1
【详解】
根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.
解:1和0的算术平方根等于本身.
故答案为1和0
“点睛”本题考查了算术平方根的知
解析:0或1
【详解】
根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.
解:1和0的算术平方根等于本身.
故答案为1和0
“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.
十、填空题
10.【分析】
由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解.
【详解】
解:因为在第四象限,则,所以,
又因为关于y轴对称,x值相反,y值不变,
解析:
【分析】
由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解.
【详解】
解:因为在第四象限,则,所以,
又因为关于y轴对称,x值相反,y值不变,
所以点A关于y轴对称点坐标为.
故答案为.
【点睛】
本题考查点的坐标的意义和对称的特点.关键是掌握点的坐标的变化规律.
十一、填空题
11.135;
【分析】
连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°
解析:135;
【分析】
连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论.
【详解】
解:连接BD,
∵∠C+∠CBD+∠CDB=180°,BC⊥CD,
∴∠C=90°,
∴∠CBD+∠CDB=90°.
∵AB∥DE,
∴∠ABD+∠BDE=180°,
∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.
∵∠ABC和∠CDE的平分线交于点F,
∴∠CBF+∠CDF=×270°=135°,
∴∠BFD=360°-90°-135°=135°.
故答案为135.
【点睛】
本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.
十二、填空题
12.36°
【分析】
根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值.
【详解】
解:∵四边形ABCD为长方形,
∴AD//BC,
∴∠DEF=
解析:36°
【分析】
根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值.
【详解】
解:∵四边形ABCD为长方形,
∴AD//BC,
∴∠DEF=∠EFB=72°,
又由折叠的性质可得∠D′EF=∠DEF=72°,
∴∠AED′=180°﹣72°﹣72°=36°,
故答案为:36°.
【点睛】
本题考查了平行线的性质,折叠的性质,熟练掌握折叠的性质是解答本题的关键.
十三、填空题
13.70
【分析】
由题意易图可得,由折叠的性质可得,然后问题可求解.
【详解】
解:由长方形可得:,
∵,
∴,
由折叠可得,
∴;
故答案为70.
【点睛】
本题主要考查平行线的性质及折叠的性质,熟
解析:70
【分析】
由题意易图可得,由折叠的性质可得,然后问题可求解.
【详解】
解:由长方形可得:,
∵,
∴,
由折叠可得,
∴;
故答案为70.
【点睛】
本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的关键.
十四、填空题
14.﹣2a﹣b
【分析】
直接利用数轴结合绝对值以及平方根的性质化简得出答案.
【详解】
解:由数轴可得:a<﹣,0<b<,
故|﹣b|+|a+|+
=﹣b﹣(a+)﹣a
=﹣b﹣a﹣﹣a
=﹣2a﹣b
解析:﹣2a﹣b
【分析】
直接利用数轴结合绝对值以及平方根的性质化简得出答案.
【详解】
解:由数轴可得:a<﹣,0<b<,
故|﹣b|+|a+|+
=﹣b﹣(a+)﹣a
=﹣b﹣a﹣﹣a
=﹣2a﹣b.
故答案为:﹣2a﹣b.
【点睛】
此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.
十五、填空题
15.(5,2)
【分析】
根据点P在第一象限,即可判断P点横、纵坐标的符号,再根据点P到x轴的距离为2,到y轴的距离为5,即可写出P点坐标.
【详解】
解:因为点P在第一象限,所以其横、纵坐标分别为正数
解析:(5,2)
【分析】
根据点P在第一象限,即可判断P点横、纵坐标的符号,再根据点P到x轴的距离为2,到y轴的距离为5,即可写出P点坐标.
【详解】
解:因为点P在第一象限,所以其横、纵坐标分别为正数、正数,
又因为点P到x轴的距离为2,到y轴的距离为5,
所以点P的横坐标为5,纵坐标为2,
所以点P的坐标为(5,2),
故答案为(5,2).
【点睛】
此题考查的是求点的坐标,掌握各个象限点的坐标特征及点到坐标轴的距离与坐标的关系是解决此题的关键.
十六、填空题
16.【分析】
根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:∵A1的坐标为(3,1),
∴A
解析:
【分析】
根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:∵A1的坐标为(3,1),
∴A2(0,4),A3(−3,1),A4(0,−2),A5(3,1),
…,
依此类推,每4个点为一个循环组依次循环,
∵2021÷4=505…1,
∴的坐标与A1的坐标相同,为(3,1).
故答案是:(3,1).
【点睛】
考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.
十七、解答题
17.(1);(2)
【分析】
(1)先求绝对值,同时利用计算,再合并即可;
(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.
【详解】
解:(1)
(2)
【点睛】
本题考
解析:(1);(2)
【分析】
(1)先求绝对值,同时利用计算,再合并即可;
(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.
【详解】
解:(1)
(2)
【点睛】
本题考查的是实数的运算,考查,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键.
十八、解答题
18.(1);(2)
【分析】
(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;
(2)方程整理后,将一个数开立方后,只得到一个解.
【详解】
解:(1)移项得,,
解析:(1);(2)
【分析】
(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;
(2)方程整理后,将一个数开立方后,只得到一个解.
【详解】
解:(1)移项得,,
开方得,;
(2)移项得,,
合并同类项得,,
开立方得,.
【点睛】
此题考查了立方根,以及平方根,熟练掌握各自的性质是解题关键.
十九、解答题
19.答案见详解.
【分析】
根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.
【详解】
证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己
解析:答案见详解.
【分析】
根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.
【详解】
证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己知),
∴∠ABC=∠ADE=90°(垂直定义),
∴BC∥DE(同位角相等,两直线平行),
∴∠1=∠EBC(两直线平行,内错角相等),
又∵∠l=∠2 (已知),
∴∠2=∠EBC(等量代换),
∴BE∥GF(同位角相等,两直线平行),
∴∠BEC+∠FGE=180°(两直线平行,同旁内角互补).
【点睛】
本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
二十、解答题
20.(1)见解析;(2)见解析;(3)
【分析】
(1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形;
(2)把三角形的各顶点向下平移5个单位长度,得到、、的对应
解析:(1)见解析;(2)见解析;(3)
【分析】
(1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形;
(2)把三角形的各顶点向下平移5个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形;
(3)三角形的面积等于边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积.
【详解】
解:(1)平移后的三角形如下图所示;
(2)平移后的三角形如下图所示;
(3)三角形的面积为边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积,
∴S△ABC
.
【点睛】
本题考查了作图平移变换,解题的关键是要掌握图形的平移要归结为图形顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差.
二十一、解答题
21.(1);(2)21.
【分析】
(1)由于81<91<100,可求的整数部分,进一步得出的小数部分;
(2)先求出4的整数部分和小数部分,再代入代数式进行计算即可.
【详解】
(1)∵81<91<1
解析:(1);(2)21.
【分析】
(1)由于81<91<100,可求的整数部分,进一步得出的小数部分;
(2)先求出4的整数部分和小数部分,再代入代数式进行计算即可.
【详解】
(1)∵81<91<100,
∴9<<10,
∴的整数部分是9,
∴的小数部分是9;
(2)∵16<21<25,
∴4<<5,
∵a是4的整数部分,b是4的小数部分,
∴a=4﹣4=0,b4,
∴(﹣a)3+(b+4)2=0+21=21.
【点睛】
本题考查了估算无理数的大小,熟练掌握估算无理数大小的方法和无理数整数部分和小数部分的表示方法是解题关键.
二十二、解答题
22.(1)4米 (2)见解析
【分析】
(1)根据正方形边长与面积间的关系求解即可;
(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.
【详解】
解
解析:(1)4米 (2)见解析
【分析】
(1)根据正方形边长与面积间的关系求解即可;
(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.
【详解】
解:(1)正方形的面积是16平方米,
正方形钢板的边长是米;
(2)设长方形的长宽分别为米、米,
则,
,
,
,,
长方形长是米,而正方形的边长为4米,所以李师傅不能办到.
【点睛】
本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键.
二十三、解答题
23.(1)见解析;(2)
【分析】
(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;
(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的
解析:(1)见解析;(2)
【分析】
(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;
(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案.
【详解】
(1)证明:
;
(2)过点E作,延长DC至Q,过点M作
,,,
AF平分
FH平分
设
,
.
【点睛】
本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.
二十四、解答题
24.(1);(2)①,见解析;②或
【分析】
(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;
(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,
解析:(1);(2)①,见解析;②或
【分析】
(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;
(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,运用角的等量代换换算即可.
【详解】
.
解:(1)设在上有一点N在点A的右侧,如图所示:
∵
∴,
∴
∴
(2)①.
证明:设,.
∴.
∵为的角平分线,
∴.
∵,
∴.
∴.
∴.
②当点在点右侧时,如图:
由①得:
又∵
∴
∵
∴
当点在点左侧,在右侧时,如图:
∵为的角平分线
∴
∵
∴,
∵
∴
∴
∵
∴
又∵
∴
∴
当点和在点左侧时,设在上有一点在点的右侧如图:
此时仍有,
∴
∴
综合所述:或
【点睛】
本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键.
二十五、解答题
25.【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a.
【分析】
[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠
解析:【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a.
【分析】
[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;
[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;
[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.
【详解】
[现象解释]
如图2,
∵OM⊥ON,
∴∠CON=90°,
∴∠2+∠3=90°
∵∠1=∠2,∠3=∠4,
∴∠1+∠2+∠3+∠4=180°,
∴∠DCB+∠ABC=180°,
∴AB∥CD;
【尝试探究】
如图3,
在△OBC中,∵∠COB=55°,
∴∠2+∠3=125°,
∵∠1=∠2,∠3=∠4,
∴∠1+∠2+∠3+∠4=250°,
∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,
∴∠EBC+BCE=360°-250°=110°,
∴∠BEC=180°-110°=70°;
【深入思考】
如图4,
β=2α,
理由如下:∵∠1=∠2,∠3=∠4,
∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,
∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,
∵∠BOC=∠3-∠2=α,
∴β=2α.
【点睛】
本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.
展开阅读全文