收藏 分销(赏)

八年级数学上学期期末强化质量检测试卷带答案.doc

上传人:精**** 文档编号:1887333 上传时间:2024-05-11 格式:DOC 页数:22 大小:1.65MB
下载 相关 举报
八年级数学上学期期末强化质量检测试卷带答案.doc_第1页
第1页 / 共22页
八年级数学上学期期末强化质量检测试卷带答案.doc_第2页
第2页 / 共22页
八年级数学上学期期末强化质量检测试卷带答案.doc_第3页
第3页 / 共22页
八年级数学上学期期末强化质量检测试卷带答案.doc_第4页
第4页 / 共22页
八年级数学上学期期末强化质量检测试卷带答案.doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、八年级数学上学期期末强化质量检测试卷带答案一、选择题1下列4个图形中,既是中心对称图形又是轴对称图形的是()ABCD2一种微粒的半径是0.00002米,数0.00002用科学记数法表示为()A2105B0.2104C2103D21053下列运算正确的是()Aa2+a22a4B4a33a212a5C(3xy2)26x2y4D(a3)2(a2)314若分式的值为0,则x的值是()ABC3D25下列各式从左边到右边的变形中,属于因式分解的是()Aa(x+y)=ax+ayB10x-5=5x(2-)Cy2-4y+4=(y-2)2Dt2-16+3t=(t+4)(t-4)+3t6小马虎在下面的计算中只做对了

2、一道题,他做对的题目是()ABCD7如图,添加一个条件_,即可证明下列添加的条件不正确的是()ABCD8若关于x的分式方程的解是正数,则m的取值范围是()ABC且D且9如图,由4个全等的小长方形与1个小正方形密铺成正方形图案,该图案的面积为49,小正方形的面积为4,若分别用,表示小长方形的长和宽,则下列关系式中不正确的是()ABCD10如图,与是两个全等的等边三角形,下列结论不正确的是()AB直线垂直平分CD四边形是轴对称图形二、填空题11要使分式的值为0,则_12若点与点关于轴对称,则_13已知ab4,a+b3,则_14已知,则_15如图,CD是ABC的角平分线,ABC的面积为12,BC长为

3、6,点E,F分别是CD,AC上的动点,则AE+EF的最小值是 _16若多项式是一个完全平方式,则m的值为_17已知,_18如图, 在 中, 点 在直线 上, 动点 从 点出发 沿 的路径向终点 运动; 动点 从 点出发沿 路径向终点 运动点 和 点 分别以每秒 和 的运动速度同时开始运动, 其中一点到达终点时另一点也停 止运动, 分别过点 和 作 直线 于 直线 于 当点 运动时间为_秒时, 与 全等三、解答题19分解因式:(1)(2)20先化简,再求值:,选择一个你喜欢的数代入求值21已知:如图,点D在线段AC上,点B在线段AE上,AE=AC,BE=DC,求证:E=C22某同学在学习过程中,

4、对教材的一个有趣的问题做如下探究:【习题回顾】已知:如图1,在ABC中,角平分线BO、CO交于点O求BOC的度数(1)若A=40,请直接写出BOC=_;(2)【变式思考】若A=,请猜想与的关系,并说明理由;(3)【拓展延伸】已知:如图2,在ABC中,角平分线BO、CO交于点O,ODOB,交边BC于点D,作ABE的平分线交CO的延长线于点F若F=,猜想BAC与的关系,并说明理由23列方程或不等式解应用题:新冠肺炎疫情防控期间,学校为做好预防性消毒工作,开学初购进A、B两种消毒液,其中A消毒液的单价比B消毒液的单价多40元,用3600元购买B消毒液的数量是用2600元购买A消毒液数量的2倍(1)求

5、两种消毒液的单价;(2)学校准备用不多于7500元的资金购买A、B两种消毒液共70桶,问最多购买A消毒液多少桶?24我们知道,任意一个正整数n都可以进行这样的分解:(p,q是正整数,且),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称是n的最佳分解,并规定;,例如12可以分解成,或,因为,所以是12的最佳分解,所以(1)求;(2)如果一个正整数只有1与m本身两个正因数,则m称为质数若质数m满足,求m的值;(3)是否存在正整数n满足,若存在,求n的值:若不存在,说明理由25如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点

6、同时出发并且移动速度相同,连接(1)如图,当点D移动到线段的中点时,与的长度关系是:_(2)如图,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论(3)如图,当点D移动到线段的延长线上,并且时,求的度数26在平面直角坐标系中,点A的坐标是,点B的坐标且a,b满足(1)求A、B两点的坐标;(2)如图(1),点C为x轴负半轴一动点,于D,交y轴于点E,求证:平分(3)如图(2),点F为的中点,点G为x正半轴点右侧的一动点,过点F作的垂线,交y轴的负半轴于点H,那么当点G的位置不断变化时,的值是否发生变化?若变化,请说明理由;若不变化,请求出相应结果【参考答案】一、选择题2B解析

7、:B【分析】根据轴对称图形与中心对称图形的概念依次分析求解【详解】解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意故选B【点睛】本题考查中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合3A解析:A【分析】科学记数法的表示形式为a10n的形式,其中110,n为正整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝

8、对值与小数点移动的位数相同【详解】解:数0.00002用科学记数法表示为2105故选:A【点睛】本题考查了用科学记数法表示较小的数,一般形式为a10n,其中110,n为负整数,n的绝对值与小数点移动的位数相同用科学计数法表示数,一定要注意a的形式,以及指数n的确定方法4B解析:B【分析】利用合并同类项的法则,单项式乘单项式的法则,幂的乘方与积的乘方的法则,同底数幂的除法的法则对各项进行运算即可【详解】、,故本选项不符合题意;、,故本选项符合题意;、,故本选项不符合题意;、,故本选项不符合题意;故选:B【点睛】本题主要考查单项式乘单项式,同底数幂的除法,幂的乘方与积的乘方,合并同类项,解答的关键

9、是对相应的运算法则的掌握5C解析:C【分析】根据分式有意义的条件及值为0的条件,即可求得【详解】解:分式的值为0, 解得 故x的值是3,故选:C【点睛】本题考查了分式有意义的条件及值为0的条件,熟练掌握和运用分式有意义的条件及值为0的条件是解决本题的关键6C解析:C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此解答即可【详解】解:A、是整式乘法,不是因式分解,故此选项不符合题意;B、右边不是整式积的形式(含有分式),不是因式分解,故此选项不符合题意;C、符合因式分解的定义,是因式分解,故此选项符合题意;D、右边不是整式积的形式,不是因式分解,故此选项不符合题

10、意;故选:C【点睛】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义7C解析:C【分析】A、利用乘方的意义计算即可;B、先通分再计算;C、根据同底数幂的除法计算即可;D、对分子提取公因数,再看能否约分【详解】解:A、,此选项错误;B、,此选项错误;C、,此选项正确;D、,此选项错误故选:C【点睛】本题考查了分式的混合运算,熟练掌握相关知识点是解题的关键8B解析:B【分析】根据全等三角形判断条件即可判断【详解】解:,即:,添加,根据HL即可判断,A选项不符合题意;添加,根据SAS即可判断,C选项不符合题意;添加,根据AAS即可判断,D选项不符合题意;B选项中,EA与DF不是对应边,所

11、以B选项不能判断故选:B【点睛】本题考查全等三角形的判断,熟练掌握全等三角形的判断定理是解题的关键9C解析:C【分析】解分式方程,得到含有m的方程的解,根据“方程的解是正数”,结合分式方程的分母不等于零,得到关于m的不等式,解之即可【详解】解:方程两边同时乘以x-1得:2x+m=3(x-1),解得:x=m+3,x-10,x1,即m+31,解得:m2,又方程的解是正数,m+30,解不等式得:m3,综上可知:m3且m2,故C正确故选:C.【点睛】本题主要考查了分式方程的解,解一元一次不等式,掌握分式方程的解,解一元一次不等式,是解题的关键10C解析:C【分析】根据完全平方公式及图形的特点找到长度关

12、系即可依次判断【详解】解:、因为正方形图案的边长7,同时还可用来表示,故,正确;、由图象可知,即,正确;、由和,可得,错误;、由,可得,所以,正确故选:【点睛】本题主要考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题11A解析:A【分析】根据与是两个全等的等边三角形,可得到,然后结合,先计算出的大小,便可计算出的大小,从而判定出AD与BC的位置关系及BE与DC的关系,同时也由于与是等腰三角形,也容易确定四边形ABCD的对称性【详解】(1)与是两个全等的等边三角形, ,所以选项A错误;(2)由(1)得:,所以选项C正确;(3)延长BE交CD于点F,连接BD, 即在与中,

13、综上,BE垂直平分CD,所以答案B正确;(4)过E作,由得而和是等腰三角形,则MN垂直平分AD、BC,所以四边形ABCD是軕对称图形,所以选项正确故选:【点睛】本题考查的知识点主要是等边三角形的性质,全等三角形的性质与判定,平行四边形的判定及其轴对称图形的定义,添加辅助线构造全等三角形是本题的难点二、填空题123【分析】根据分式的值为零的条件:分子等于0且分母不等于0即可得出答案【详解】解:根据题意得m-3=0,m+30,m=3,故答案为:3【点睛】本题考查了分式的值为零的条件,掌握分式的值为零的条件:分子等于0且分母不等于0是解题的关键131【分析】根据若两点关于轴对称,则横坐标不变,纵坐标

14、互为相反数,即可求解【详解】解:点与点关于轴对称,故答案为:1.【点睛】本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于轴对称,则横坐标不变,纵坐标互为相反数;若两点关于y轴对称,则横坐标互为相反数,纵坐标不变是解题的关键14【分析】先通分:,然后再代入数据即可求解【详解】解:由题意可知:,故答案为:【点睛】本题考查了分式的加减运算及求值,属于基础题,计算过程中细心即可152【分析】根据同底数幂除法的逆运算求解即可【详解】解:,故答案为:2【点睛】本题主要考查了同底数幂除法的逆运算,熟知相关计算法则是解题的关键164【分析】作关于的对称点,由是的角平分线,得到点一定在上

15、,过作于,交于,则此时,的值最小,的最小值,过作于,根据垂直平分线的性质和三角形的面积即可得到结论【详解】解:作关于的对称点,解析:4【分析】作关于的对称点,由是的角平分线,得到点一定在上,过作于,交于,则此时,的值最小,的最小值,过作于,根据垂直平分线的性质和三角形的面积即可得到结论【详解】解:作关于的对称点,是的角平分线,点一定在上,过作于,交于,则此时,的值最小,的最小值,过作于,的面积为12,长为6,垂直平分,的最小值是4,故答案为:4【点睛】本题考查了轴对称最短路线问题,解题的关键是正确的作出对称点和利用垂直平分线的性质证明的最小值为三角形某一边上的高线1736【分析】先根据乘积二倍

16、项确定出这两个数是x和6,再根据完全平方公式求解即可【详解】解:12x=26x,这两个数是x和6,m=62=36故答案为:36【点睛】解析:36【分析】先根据乘积二倍项确定出这两个数是x和6,再根据完全平方公式求解即可【详解】解:12x=26x,这两个数是x和6,m=62=36故答案为:36【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式此题解题的关键是利用乘积项来确定这两个数1847【分析】利用完全平方公式计算,即可求解【详解】解:,故答案为:47【点睛】本题主要考查了完全平方公式的应用,熟练掌握完全平方公式是解题的关键解析:47【分析】利用完

17、全平方公式计算,即可求解【详解】解:,故答案为:47【点睛】本题主要考查了完全平方公式的应用,熟练掌握完全平方公式是解题的关键192或6#6或2【分析】对点P和点Q是否重合进行分类讨论,通过证明全等即可得到结果;【详解】解:如图1所示:与全等,解得;如图2所示:点与点重合解析:2或6#6或2【分析】对点P和点Q是否重合进行分类讨论,通过证明全等即可得到结果;【详解】解:如图1所示:与全等,解得;如图2所示:点与点重合,与全等,解得;故答案为或【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键三、解答题20(1)(2)【分析】(1)提取公因式,利用平方差公式因式分解;(2)提

18、取公因式,利用完全平方公式因式分解(1)原式(2)原式【点睛】本题考查因式分解及其解析:(1)(2)【分析】(1)提取公因式,利用平方差公式因式分解;(2)提取公因式,利用完全平方公式因式分解(1)原式(2)原式【点睛】本题考查因式分解及其解题技巧的运用能力合理利用因式分解常用方法:先提公因式法,后公式法(平方差公式、完全平方差公式)是解本题的关键21化简结果为;代入值为-2【分析】先通分,因式分解,然后进行除法运算,最后选取使分式有意义的值代入求解即可【详解】解:,当时,原式化简结果为,值为【点睛】本题解析:化简结果为;代入值为-2【分析】先通分,因式分解,然后进行除法运算,最后选取使分式有

19、意义的值代入求解即可【详解】解:,当时,原式化简结果为,值为【点睛】本题考查了分式的化简求值,分式有意义的条件解题的关键在于熟练掌握完全平方公式与通分22见解析【分析】利用SAS证明ABCADE即可得出结论【详解】证明:AE=AC,BE=DC,AB=AD,在ABC和ADE中,ABCADE(SAS),解析:见解析【分析】利用SAS证明ABCADE即可得出结论【详解】证明:AE=AC,BE=DC,AB=AD,在ABC和ADE中,ABCADE(SAS),E=C【点睛】本题主要考查了全等三角形的判定与性质,证明ABCADE是解题的关键23(1)110(2),理由见解析(3),理由见解析【分析】(1)利

20、用三角形内角和和角平分线性质,可求得角度;(2)将定角转化为动角,利用三角形内角和和角平分线性质,可求得角度的关系;解析:(1)110(2),理由见解析(3),理由见解析【分析】(1)利用三角形内角和和角平分线性质,可求得角度;(2)将定角转化为动角,利用三角形内角和和角平分线性质,可求得角度的关系;(3)在(2)的基础结论上,通过角平分线性质可求证FBOD,然后角的关系就能够表示出来(1), ,角平分线、分别平分、,在中,故答案为:110,(2),、是角平分线, ,(3)由图可知, ,【点睛】此题考查了双角平分线模型,利用三角形内角和定理以及角平分线性质,推理出各个角之间的关系是本题的关键2

21、4(1)A消毒液的单价为130元,B消毒液的单价为90元(2)30桶【分析】(1)根据题意,找出题中的等量关系,列出方程求解即可;设B消毒液的单价为x元,则A消毒液的单价为元,种类单价解析:(1)A消毒液的单价为130元,B消毒液的单价为90元(2)30桶【分析】(1)根据题意,找出题中的等量关系,列出方程求解即可;设B消毒液的单价为x元,则A消毒液的单价为元,种类单价数量总价A消毒液x+402600B消毒液x3600(2)设购进A消毒液m桶,则购进B消毒液桶,结合(1)中计算出的单价,列出不等式求出解集即可(1)设B消毒液的单价为x元,则A消毒液的单价为元,依题意得:,解得:,经检验,是原方

22、程的解,且符合题意,答:A消毒液的单价为130元,B消毒液的单价为90元(2)设购进A消毒液m桶,则购进B消毒液桶,依题意得:,解得:答:最多购买A消毒液30桶【点睛】本题主要考查了分式方程的实际应用和一元一次不等式的实际应用,仔细理解题意,找出题中的等量关系和不等关系,正确地列出方程和不等式是解题的关键25(1);(2)5;(3)4,理由见解析【分析】(1)读懂F(n)的定义,写出24的最佳分解,即可直接作答;(2)根据F ( m+4) =1可以知道m+4是一个平方数,再利用因式分解解析:(1);(2)5;(3)4,理由见解析【分析】(1)读懂F(n)的定义,写出24的最佳分解,即可直接作答

23、;(2)根据F ( m+4) =1可以知道m+4是一个平方数,再利用因式分解求出m的值;(3)根据,设n=a4a=4a2,n+12=b4b=4b2,由n=4a2=4b2-12得,进而得,从而求得n的值(1)解:24=124=212=38=46,24-112-28-36-4,;(2)解:由质数m满足设,m+4=a2,m=,m为质数,a-2=1,a=3,m=a2-4=5,(3)解:存在n的值,理由如下:由,设n=a4a=4a2,n+12=b4b=4b2,n=4a2=4b2-12,b2-a2=3,a,b为正整数, ,解得,n=4a2=41=4【点睛】本题考查因式分解的应用,用读懂新定义,并把问题转化

24、为方程或方程组,再用因式分解法解方程或方程组是解题的关键26(1)(2),证明见详解(3)【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可解析:(1)(2),证明见详解(3)【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边三角形,再利用边角边即可证明,最后根据全等三角形的性质即可证明;(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,如图(见详解),用同样的方法证明,

25、再根据EDDC,证出为等腰直角三角形,即可求出DEC的度数(1)解:,证明过程如下:由题意可知, D为AB的中点,为等边三角形,(2)解:,理由如下:在射线AB上截取,连接EF,如图所示,为等边三角形,为等边三角形,由题意知,即,在和中,DE与DC之间的数量关系是(3)如图,在射线CB上截取,连接DF,如图所示,为等边三角形,为等边三角形,由题意知,即,在和中,EDDC,为等腰直角三角形,【点睛】本题主要考查了等腰三角形,等边三角形,以及全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键27(1),;(2)证明见解析;(3)不变化,【分析】(1)由非负性可求a,b的

26、值,即可求A、B两点的坐标;(2)过点O作于M,于N,根据全等三角形的判定和性质解答即可;(3)由于点F是等解析:(1),;(2)证明见解析;(3)不变化,【分析】(1)由非负性可求a,b的值,即可求A、B两点的坐标;(2)过点O作于M,于N,根据全等三角形的判定和性质解答即可;(3)由于点F是等腰直角三角形AOB的斜边的中点,所以连接OF,得出OF=BFBFO=GFH,进而得出OFH=BFG,利用等腰直角三角形和全等三角形的判定和性质以及三角形面积公式解答即可【详解】解:(1) , ,即,(2)如图,过点O作于M,于N,根据题意可知,OAOB6在和中, , ,点O一定在CDB的角平分线上,即OD平分CDB(3)如图,连接OF,是等腰直角三角形且点F为AB的中点,OF平分AOB又,又,在和中 ,故不发生变化,且【点睛】本题为三角形综合题,考查非负数的性质,角平分线的判定,等腰直角三角形的性质和判定、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,正确添加辅助线,构造全等三角形解决问题,属于中考压轴题

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服