1、八年级数学下册期末试卷同步检测(Word版含答案)(1)一、选择题1在函数中,自变量x的取值范围是()ABCD2下列各组数中,能构成直角三角形的是( )A4,5,6B1,1,C6,8,11D5,12,233如图,在平行四边形ABCD中, 对角线AC、BD相交于点O E、F是对角线AC上的两个不同点,当E、F两点满足下列条件时,四边形DEBF不一定是平行四边形( )AAECFBDEBFCADE=CBFDAED=CFB4班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:甲乙丙平均数/分969597方差0.422丁同学五轮预选赛的成绩
2、依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择( )A甲B乙C丙D丁5如图,在正方形ABCD中,若点P为线段AD上方一动点,且满足PD=2,BPD=90,则点A到直线BP的距离为( )ABCD6如图,在菱形中,分别为边的中点,且于于则的度数为( )ABCD7如图,在正方形ABCD中,APCQ,APCQ,BQC90,若正方形ABCD的面积为64,且AP+BQ10,则PQ的长为( )AB2CD28已知函数(为常数,)的图象经过点,且实数,满足等式:,则一次函数与轴的交点坐标为( )ABCD二、填空题9函数自变量的
3、取值范围是_10如图,菱形的对角线、相交于点,点、分别为边、的中点,连接,若,则菱形的面积为_11如图,每个方格都是边长为1的小正方形,则ABBC_12如图,为的中位线,点在上,且为直角若,则的长为_13若点A(2,12)在正比例函数ykx(k0)的图象上,则正比例函数的解析式为_14如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PEAC于E,PFBD于F,则PE+PF等于_15如图1,在平面直角坐标系中,将平行四边形ABCD放置在第一象限,且ABx轴直线yx从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么AB
4、的长为_16如图,长方形ABCD中,AB=2,BC=4,点E是BC边上一点,连接AE,把B沿AE折叠,使点B落在点B处当CEB为直角三角形时,BE的长为_三、解答题17计算:(1)2;(2)18湖的两岸有A,B两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB垂直的BC方向上取点C,测得米,米求:(1)两棵景观树之间的距离;(2)点B到直线AC的距离19在所给的99方格中,每个小正方形的边长都是1,按要求画平行四边形,使它的四个顶点以及对角线交点都在方格的顶点上(1)在图甲中画一个平行四边形,使它的周长是整数(2)在图乙中画一个平行四边形,使它的周长是无理数20如图,在AB
5、C中,D,E分别是AB,BC的中点,连接DE并延长至点F,使得DEEF,连接CF(1)求证:四边形ADFC是平行四边形;(2)若AB,连接CD,BF求证:四边形BFCD是矩形21先阅读下列解答过程,然后再解答:小芳同学在研究化简中发现:首先把化为由于,即:, ,所以,问题:(1)填空:_,_(2)进一步研究发现:形如的化简,只要我们找到两个正数a,b(),使,即,那么便有: _(3)化简:(请写出化简过程)22某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,问:(1)求一次函数解析式(2)旅客可携带的免费行李的最大质量是多少kg?23已知如图1,
6、四边形是正方形, 如图1,若点分别在边上,延长线段至,使得,若求的长;如图2,若点分别在边延长线上时,求证: 如图3,如果四边形不是正方形,但满足且,请你直接写出的长24【模型建立】(1)如图1,等腰直角三角形ABC中,ACB90,CACB,直线ED经过点C,过A作ADED于点D,过B作BEED于点E求证:CDABEC【模型运用】(2)如图2,直线l1:yx+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90至直线l2,求直线l2的函数表达式【模型迁移】如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30,点A在直线l上,点P为x轴上一动点,连接AP,将线段AP绕点P顺时针旋转30得到
7、BP,过点B的直线BC交x轴于点C,OCB30,点B到x轴的距离为2,求点P的坐标25如图,四边形ABCD是边长为3的正方形,点E在边AD所在的直线上,连接CE,以CE为边,作正方形CEFG(点C、E、F、G按逆时针排列),连接BF. (1)如图1,当点E与点D重合时,BF的长为 ;(2)如图2,当点E在线段AD上时,若AE=1,求BF的长;(提示:过点F作BC的垂线,交BC的延长线于点M,交AD的延长线于点N.)(3)当点E在直线AD上时,若AE=4,请直接写出BF的长.【参考答案】一、选择题1D解析:D【分析】根据被开方数大于等于0列式计算即可得解【详解】解:根据题意得,2x-30,解得x
8、故选择:D【点睛】本题考查的知识点为:二次根式的被开方数是非负数2B解析:B【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可【详解】解:A、因为425262,所以不能构成直角三角形;B、因为1212=()2,所以能构成直角三角形;C、因为6282112,所以不能构成直角三角形;D、因为52122232,所以不能构成直角三角形故选:B【点睛】此题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断3B解析:B【解析】【分析】根据平行四边形的性质以及平
9、行四边形的判定定理即可得出判断【详解】解:A、在平行四边形ABCD中,OA=OC,OB=OD,若AE=CF,则OE=OF,四边形DEBF是平行四边形;B、若DE=BF,没有条件能够说明四边形DEBF是平行四边形,则选项错误;C、在平行四边形ABCD中,OB=OD,ADBC,ADB=CBD,若ADE=CBF,则EDB=FBO,DEBF,则DOE和BOF中,DOEBOF,DE=BF,四边形DEBF是平行四边形故选项正确;D、AED=CFB,DEO=BFO,DEBF,在DOE和BOF中,DOEBOF,DE=BF,四边形DEBF是平行四边形故选项正确故选B【点睛】本题考查了平行四边形的性质以及判定定理
10、,涉及到全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键4D解析:D【解析】【分析】首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛【详解】解:根据题意,丁同学的平均分为:,方差为:;丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,应该选择丁同学去参赛;故选:D【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定5C解析:C【分析】由题意可得点P在以D为圆心,2为半径的圆
11、上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,由勾股定理可求BP,AH的长,即可求点A到BP的距离【详解】解:作正方形的外接圆,另外以点D为圆心,为半径作圆,两圆在线段AD上方的交点即为点P,连接AC、BD、PD、PB、PA,作AHBP,垂足为H,过点A作,交BP于点E,如图,四边形ABCD是正方形,ADB=45,BD=4,DP=2,又,为等腰直角三角形,即,即点到的距离为故选【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰三角形的判定和性质、勾股定理、圆等知识,解题的关键是灵活运用这些知识6C解析:C【解析】【分析】根据菱形的性质求出,又因为,得出,再由,可得最后可推出【
12、详解】解:,又,又,故选:【点睛】此题主要考查的知识点:(1)直角三角形中,锐角所对的直角边等于斜边的一半的逆定理;(2)菱形的两个邻角互补;(3)同角的补角相等;(4)菱形的四边相等7D解析:D【解析】【分析】延长AP交BQ于点E,证明ABEBCQ可得PEQ为等腰直角三角形,PEQEBQAP,由四边形面积为64可得BQ2+AP264,再由勾股定理得PQ【详解】解:延长AP交BQ于点E,四边形ABCD为正方形,ABBC,DABABC90,APCQ,BQC90,AEBAEQ90,QBC+ABEABE+BAE90,QBCBAE,在RtABE和RtBCQ中,RtABERtBCQ(AAS),BECQ,
13、AEBQ,APCQ,PEAEAPBQAP,QEBQBEBQCQBQAP,正方形ABCD的面积为64,ABBC8,APCQ,AP+BQ10,CQ+BQ10,BQC90在RtBQC中,BQ2+CQ2BC264,即BQ2+AP264,(AP+BQ)2AP2+BQ2+2APBQ64+2APBQ100,APBQ18,在RtPEQ中,由勾股定理得,PQ故选:D【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质、等腰三角形的性质和勾股定理,准确计算是解题的关键8C解析:C【分析】将点代入函数中,得到关于,的关系式,将看作常数,再联立满足的等式组成二元一次方程组,将,用含的式子表示出来,此时再回代入函
14、数中,求解出的值,最后在一次函数中令,求解出y的值,最终表示出交点坐标即可【详解】解:将点代入函数中,得:,又,化简可得:此时联立方程组可得: ,解得:,点的坐标可表示为(-k,2k),将(-k,2k)代入得:,解得,为常数且,此时一次函数,令,解得:,交点坐标为故选:C【点睛】本题考查了一次函数与二元一次方程组,联立二元一次方程组并正确求解是解题的关键二、填空题9【解析】【分析】由分式有意义的条件,二次根式有意义的条件进行计算,即可得到答案【详解】解:,;故答案为:【点睛】本题考查了分式有意义的条件,二次根式有意义的条件,解题的关键是掌握所学的知识,正确的得到10A解析:【解析】【分析】根据
15、MN是ABC的中位线,根据三角形中位线定理求的AC的长,然后根据菱形的性质求解【详解】解:M、N是AB和BC的中点,即MN是ABC的中位线,AC=2MN=2,所以菱形的面积为 ,故答案为:【点睛】本题考查了三角形的中位线定理和菱形的性质,理解中位线定理求的AC的长是关键11A解析:【解析】【分析】根据勾股定理可以求出AB和BC的长,进而可求出AB+BC的值【详解】解:每个方格都是边长为1的小正方形,ABBC故答案为【点睛】本题考查了勾股定理熟练掌握勾股定理是解题的关键12D解析:5【分析】根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半
16、求出DE的长,然后相减即可得到EF的长【详解】解:DE为ABC的中位线,DE=BC=4=2,AFB=90,D是AB 的中点,DF=AB= 3=,EF=DE-DF=0.5,故答案为:0.5【点睛】本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键13A解析:y6x【解析】【分析】直接把A点坐标代入ykx中求出k即可【详解】解:把A(2,12)代入ykx得2k12,解得k6,所有正比例函数解析式为y6x故答案为:y6x【点睛】本题考查了待定系数法求正比例函数的解析式14A解析:【详解】解:设AC与BD相交于点O,连接OP,过D作DMAC于M,四边形
17、ABCD是矩形, ,AC=BD,ADC=90OA=ODAB=3,AD=4,由勾股定理得:AC= ,DM=, PE+PF=DM=故选B154【分析】由图1,当直线在DE的左下方时,由图2可得AE长度;由图1,当直线在DE和BF之间时,长度不变,由图2可得EB的长度,从而AB=AE+EB,即求得AB【详解】如图1,当直线在DE解析:4【分析】由图1,当直线在DE的左下方时,由图2可得AE长度;由图1,当直线在DE和BF之间时,长度不变,由图2可得EB的长度,从而AB=AE+EB,即求得AB【详解】如图1,当直线在DE的左下方时,由图2得:AE=7-4=3;由图1,当直线在DE和BF之间时,由图2可
18、得:EB=8-7=1,所以AB=AE+EB=3+1=4故答案为:4【点睛】本题考查一次函数的图象与图形的平移,平行四边形的性质,关键是明确题意,读懂函数图象,利用数形结合的思想162或【分析】当CEB为直角三角形时,有两种情况:当点B落在矩形内部时,如答图1所示连结AC,先利用勾股定理计算出AC= ,根据折叠的性质得ABE=B=90,而当CEB为直角解析:2或【分析】当CEB为直角三角形时,有两种情况:当点B落在矩形内部时,如答图1所示连结AC,先利用勾股定理计算出AC= ,根据折叠的性质得ABE=B=90,而当CEB为直角三角形时,只能得到EBC=90,所以点A、B、C共线,即B沿AE折叠,
19、使点B落在对角线AC上的点B处,则EB=EB,AB=AB=2,可计算出CB=-2,设BE=x,则EB=x,CE=4-x,然后在RtCEB中运用勾股定理可计算出x当点B落在AD边上时,如答图2所示此时ABEB为正方形【详解】解:当CEB为直角三角形时,有两种情况:当点B落在矩形内部时,如答图1所示连结AC,在RtABC中,AB=2,BC=4, ,B沿AE折叠,使点B落在点B处,ABE=B=90,当CEB为直角三角形时,只能得到EBC=90,点A、B、C共线,即B沿AE折叠,使点B落在对角线AC上的点B处,EB=EB,AB=AB=2,CB=,设BE=x,则EB=x,CE=4-x,在RtCEB中,E
20、B2+CB2=CE2, 即: ,解得: ;当点B落在AD边上时,如答图2所示此时ABEB为正方形,BE=AB=2故答案为:2或;【点睛】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等也考查了矩形的性质以及勾股定理注意本题有两种情况,需要分类讨论,避免漏解三、解答题17(1);(2)【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可【详解】解:(1)解析:(1);(2)【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简
21、,然后根据二次根式的混合计算法则求解即可【详解】解:(1) ;(2)【点睛】本题主要考查了利用二次根式的化简和二次根式的混合运算,熟练掌握相关计算法则是解题的关键18(1)A,B两点间的 距离是40米;(2)点B到直线AC的距离是24米【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可【详解】(1)因为是直角三角形,所以由勾股定解析:(1)A,B两点间的 距离是40米;(2)点B到直线AC的距离是24米【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可【详解】(1)因为是直角三角形,所以由勾股定理,得因为米,所以因为,所以米即A,B两点间的 距离是40米(2
22、)过点B作于点D因为,所以所以(米),即点B到直线AC的距离是24米【点睛】本题考查了勾股定理的应用,属于基础题,关键是掌握勾股定理在直角三角形中的表达式19(1)见解析;(2)见解析【解析】【分析】(1)作边长为3,5的平行四边形即可;(2)作边长为,的平行四边形即可;【详解】解(1)根据网格作出边长为3,4,5的直角三角形,再以4为公共边解析:(1)见解析;(2)见解析【解析】【分析】(1)作边长为3,5的平行四边形即可;(2)作边长为,的平行四边形即可;【详解】解(1)根据网格作出边长为3,4,5的直角三角形,再以4为公共边作边长为3,4,5的直角三角形,如下图:(2)借助网格,作边长为
23、、的三角形,再以为公共边作边长为、的三角形,如下图:【点睛】此题主要考查了应用设计与作图以及勾股定理和平行四边形的判定,正确借助网格是解题关键20(1)见解析;(2)见解析【分析】(1)根据三角形中位线定理可得,结合已知条件,根据一组对边平行且相等即可证明四边形ADFC是平行四边形;(2)先证明是平行四边形,进而根据等角对等边可得,由(解析:(1)见解析;(2)见解析【分析】(1)根据三角形中位线定理可得,结合已知条件,根据一组对边平行且相等即可证明四边形ADFC是平行四边形;(2)先证明是平行四边形,进而根据等角对等边可得,由(1)可知,根据对角线相等的平行四边形是矩形即可得证【详解】(1)
24、D,E分别是AB,BC的中点,DE/AC且,DF/AC且,四边形ADFC为平行四边形(2)连接BF,CD,如图,由(1)知四边形ADFC为平行四边形,CF/AB且,D是AB的中点,所以,CF/DB且,四边形BFCD为平行四边形,AB,ACBC,由(1)知,DFAC,DFBC,四边形BFCD为矩形【点睛】本题考查了三角形中位线定理,平行四边形的性质与判定,矩形的判定定理,掌握以上性质与定理是解题的关键21(1),;(2);(3)【解析】【分析】(1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算;(2)根据题目给的a,b与m、n的关系式,用一样的方法列式算出结果;(3)将写成,4解析:
25、(1),;(2);(3)【解析】【分析】(1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算;(2)根据题目给的a,b与m、n的关系式,用一样的方法列式算出结果;(3)将写成,4写成,就可以凑成完全平方的形式进行计算【详解】解:(1);(2);(3)=【点睛】本题考查二次根式的计算和化简,解题的关键是掌握二次根式的运算法则22(1)y=20x-300;(2)15【分析】(1)根据图象,用待定系数法即可求出函数的解析式;(2)根据解析式取y=0,求出对应的x即可【详解】解:(1)设y=kx+b,代入(20,10解析:(1)y=20x-300;(2)15【分析】(1)根据图象,用待定系数
26、法即可求出函数的解析式;(2)根据解析式取y=0,求出对应的x即可【详解】解:(1)设y=kx+b,代入(20,100),(30,300),得:,解得:,y=20x-300;(2)取y=0,则20x-300=0,解得x=15,免费行李的最大质量为15kg【点睛】本题主要考查一次函数的图形,关键是能根据图象用待定系数法求出函数的解析式,然后根据y的值即可求出x的值23(1);(2)见解析;(3)【分析】(1)先用SAS证ABGADF,可得AG=AF,BAG=DAF,又可证EAG=EAF,故可用SAS证GAEFAE,EF=GE,即EF长度可求;(解析:(1);(2)见解析;(3)【分析】(1)先用
27、SAS证ABGADF,可得AG=AF,BAG=DAF,又可证EAG=EAF,故可用SAS证GAEFAE,EF=GE,即EF长度可求;(2)在DF上取一点G,使得DG=BE, 连接AG,先用SAS证ABEADG,可得AE=AG,BAE=DAG,又可证EAF=GAF,故可用SAS证AEFAGF,可得EF=GF,且DG=BE,故EF=DF-DG=DF-BE;(3)在线段DF上取BE=DG,连接AG,求证ABE=ADC,即可用SAS证ABEADG,可得AE=AG,BAE=DAG,又可证EAF=GAF,故可用SAS证AEFAGF,可得EF=GF,设BE=x,则CE= 7+x,EF=18-x,根据勾股定理
28、:,即可求得BE的长度【详解】解:(1)证明:如图1所示,在正方形ABCD中,AB=AD,BAD=90,在ABG和ADF中,ABGADF(SAS),AG=AF,BAG=DAF,又DAF+FAB=FAB+BAG=90,且EAF=45,EAG=FAG-EAF=45=EAF,在GAE和FAE中,GAEFAE(SAS),EF=GE=GB+BE=2+3=5;(2)如下图所示,在DF上取一点G,使得DG=BE, 连接AG,四边形ABCD是正方形,故AB=AD,ABE=ADG=90,在ABE和ADG中,ABEADG(SAS),AE=AG,BAE=DAG,BAG+DAG=90,故BAG+BAE=90,EAF=
29、45,故GAF=45,EAF=GAF=45,在AEF和AGF中,AEFAGF(SAS),EF=GF,且DG=BE,EF=DF-DG=DF-BE;(3)BE=5,如下图所示,在线段DF上取BE=DG,连接AG,BAD=BCD=90,故ABC+ADC=180,且ABC+ABE=180,ABE=ADC,在ABE和ADG中,ABEADG(SAS),AE=AG,BAE=DAG,BAG+DAG=90,故BAG+BAE=90,EAF=45,故GAF=45,EAF=GAF=45,在AEF和AGF中,AEFAGF(SAS),EF=GF,设BE=x,则CE=BC+BE =7+x,EF=GF=DC+CF-DG= D
30、C+CF-BE=18-x,在直角三角形ECF中,根据勾股定理:,即:,解得x=5,BE=x=5【点睛】本题主要考察了全等三角形的证明及性质、勾股定理,解题的关键在于添加辅助线,找出全等三角形,并用对应边/对应角相等的定理,解决该题24(1)见解析;(2);(3)点P坐标为(4,0)或(4,0)【解析】【分析】(1)由“AAS”可证CDABEC;(2)如图2,在l2上取D点,使ADAB,过D点作DEOA,垂足为解析:(1)见解析;(2);(3)点P坐标为(4,0)或(4,0)【解析】【分析】(1)由“AAS”可证CDABEC;(2)如图2,在l2上取D点,使ADAB,过D点作DEOA,垂足为E,
31、由(1)可知BOAAED,可得DEOA3,AEOB4,可求点D坐标,由待定系数法可求解析式;(3)分两种情况讨论,通过证明OAPCPB,可得OPBC4,即可求点P坐标【详解】(1)证明:ADDE,BEDE,DE90,BCE+CBE=90,ACB90,ACD+BCE=90,ACD=CBE,又CABC,DE90CDABEC(AAS)(2)如图2,在l2上取D点,使ADAB,过D点作DEOA,垂足为E直线yx+4与坐标轴交于点A、B,A(3,0),B(0,4),OA3,OB4,由(1)得BOAAED,DEOA3,AEOB4,OE7,D(7,3)设l2的解析式为ykx+b,得解得直线l2的函数表达式为
32、:(3)若点P在x轴正半轴,如图3,过点B作BEOC,BE2,BCO30,BEOCBC4,将线段AP绕点P顺时针旋转30得到BP,APBP,APB30,APCAOC+OAPAPB+BPC,OAPBPC,且OACPCB30,APBP,OAPCPB(AAS)OPBC4,点P(4,0)若点P在x轴负半轴,如图4,过点B作BEOC,BE2,BCO30,BEOCBC4,将线段AP绕点P顺时针旋转30得到BP,APBP,APB30,APE+BPE30,BCE30BPE+PBC,APEPBC,AOEBCO30,AOPBCP150,且APEPBC,PAPBOAPCPB(AAS)OPBC4,点P(4,0)综上所
33、述:点P坐标为(4,0)或(4,0)【点睛】本题是一道关于一次函数的综合题目,涉及到的知识点有全等三角形的判定定理及其性质、一次函数图象与坐标轴的交点、用待定系数法求一次函数解析式、旋转的性质等,掌握以上知识点是解此题的关键25(1);(2);(3)【分析】(1)利用勾股定理即可求出.(2)过点F作FHAD交AD于的延长线于点H,作FMAB于点M,证出,进而求得MF,BM的长,再利用勾股定理,即可求得.(3)分解析:(1);(2);(3)【分析】(1)利用勾股定理即可求出.(2)过点F作FHAD交AD于的延长线于点H,作FMAB于点M,证出,进而求得MF,BM的长,再利用勾股定理,即可求得.(
34、3)分两种情况讨论,同(2)证得三角形全等,再利用勾股定理即可求得.【详解】(1)由勾股定理得: (2)过点F作FHAD交AD于的延长线于点H,作FMAB于点M,如图2所示:则FM=AH,AM=FH四边形CEFG是正方形 EC=EF,FEC=90 DEC+FEH=90,又四边形是正方形 ADC=90 DEC+ECD=90,ECD=FEH又EDC=FHE=90, FH=ED EH=CD=3AD=3,AE=1,ED=AD-AE=3-1=2,FH=ED=2MF=AH=1+3=4,MB=FH+CD=2+3=5在RtBFM中,BF= (3)分两种情况:当点E在边AD的左侧时,过点F作FMBC交BC的反向
35、延长线于点M,交DE于点N.如图3所示:同(2)得: EN=CD=3,FN=ED=7AE=4AN=AE-EN=4-3=1MB=AN=1 FM=FN+NM=7+3=10在中由勾股定理得: 当点E在边AD的右侧时,过点F作FNAD交AD的延长线于点N,交BC延长线于M,如图4所示:同理得: NF=DE=1,EN=CD=3FM=3-1=2,CM=DN=DE+EN=1+3=4BM=CB+CM=3+4=7在中由勾股定理得: 故BF的长为【点睛】本题为考查三角形全等和勾股定理的综合题,难点在于根据E点位置的变化,画出图形,注意(3)分情况讨论,难度较大,属压轴题,熟练掌握三角形全等的性质和判定以及勾股定理的运用是解题关键.