资源描述
人教版七年级数学下册期末学业水平(附答案)
一、选择题
1.“9的平方根”这句话用数学符号表示为()
A. B.± C. D.±
2.如图所示的图案分别是四种汽车的车标,其中可以看作是由“基本图案”经过平移得到的是( )
A. B. C. D.
3.若点P在x轴的下方,y轴的右方,到x轴、y轴的距离分别是3和4,则点P的坐标为( )
A.(4,﹣3) B.(﹣4,3) C.(﹣3,4) D.(3,4)
4.下列句子中,属于命题的是( )
①三角形的内角和等于180度;②对顶角相等;③过一点作已知直线的垂线;④两点确定一条直线.
A.①④ B.①②④ C.①②③ D.②③
5.将一副三角板按如图放置,如果,则有是( )
A.15° B.30° C.45° D.60°
6.给出下列四个说法:①一个数的平方等于1,那么这个数就是1;②4是8的算术平方根;③平方根等于它本身的数只有0;④8的立方根是±2.其中,正确的是( )
A.①② B.①②③ C.②③ D.③
7.如图,已知,平分,,则的度数是( )
A. B. C. D.
8.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则运动到第2021秒时,点P所处位置的坐标是( )
A.(2020,﹣1) B.(2021,0) C.(2021,1) D.(2022,0)
九、填空题
9.已知=2.493, =7.882,则=______________.
十、填空题
10.已知点在第四象限,,则点A关于y轴对称的坐标是__________.
十一、填空题
11.如图,四边形ABCD中,AB∥CD,AD∥BC,且∠BAD、∠ADC的角平分线AE、DF分别交BC于点E、F.若EF=2,AB=5,则AD的长为_______.
十二、填空题
12.如图,把一张长方形纸片沿折叠后,、分别落在,的位置上,与交于点,若,则______.
十三、填空题
13.如图所示,是用一张长方形纸条折成的,如果,那么___°.
十四、填空题
14.已知的小数部分是,的小数部分是,则________.
十五、填空题
15.点P(2a,2﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为12,则点P的坐标是__.
十六、填空题
16.如图,点,,,,,……根据这个规律,探究可得点的坐标是________.
十七、解答题
17.计算:
(1).
(2)﹣12+(﹣2)3× .
十八、解答题
18.已知,,求下列各式的值
;
十九、解答题
19.如图.试问、、有什么关系?
解:,理由如下:
过点作
则______( )
又∵,
∴____________( )
∴____________( )
∴( )
即____________
二十、解答题
20.如图,的三个顶点坐标分别为,,.
(1)在平面直角坐标系中,画出;
(2)将向下平移个单位长度,得到,并画出,并写出点的坐标.
二十一、解答题
21.已知:是的整数部分,是的小数部分.
求:
(1),值
(2)的平方根.
二十二、解答题
22.如图,8块相同的小长方形地砖拼成一个大长方形,
(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)
(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?
二十三、解答题
23.已知AB∥CD,线段EF分别与AB,CD相交于点E,F.
(1)请在横线上填上合适的内容,完成下面的解答:
如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;
解:过点P作直线PH∥AB,
所以∠A=∠APH,依据是 ;
因为AB∥CD,PH∥AB,
所以PH∥CD,依据是 ;
所以∠C=( ),
所以∠APC=( )+( )=∠A+∠C=97°.
(2)当点P,Q在线段EF上移动时(不包括E,F两点):
①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;
②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.
二十四、解答题
24.如图1,为直线上一点,过点作射线,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方,将图1中的三角板绕点以每秒3°的速度沿顺时针方向旋转一周.
(1)几秒后与重合?
(2)如图2,经过秒后,,求此时的值.
(3)若三角板在转动的同时,射线也绕点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间与重合?请画图并说明理由.
(4)在(3)的条件下,求经过多长时间平分?请画图并说明理由.
二十五、解答题
25.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.
(1)l2与l3的位置关系是 ;
(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED= °,∠ADC= °;
(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;
(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据平方根的定义:如果(),那么a就叫做b的平方根,解答即可.
【详解】
解:∵
∴“9的平方根”这句话用数学符号表示为:,
故选B.
【点睛】
本题考查了平方根的定义,是基础概念题,熟记概念是解题的关键.
2.C
【分析】
根据平移变换的定义可得结论.
【详解】
解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的.
故选:C.
【点睛】
本题考查利用平移设计图案,解题的关键是理解平移变换
解析:C
【分析】
根据平移变换的定义可得结论.
【详解】
解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的.
故选:C.
【点睛】
本题考查利用平移设计图案,解题的关键是理解平移变换的定义,属于中考基础题.
3.A
【分析】
根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可.
【详解】
点P在x轴的下方,y轴的右方,
点P在第四象限,
又点P到x轴、y轴的距离分别是3和4,
点P的横坐标是4,纵坐标是-3,
即点P的坐标为,
故选:A.
【点睛】
本题主要考查了点在在第四象限内的坐标符号,以及横坐标的绝对值解释到y轴的距离,纵坐标的绝对值就是到x轴的距离.
4.B
【分析】
根据命题的定义即表示对一件事情进行判断的语句叫命题,分别对每一项是否是命题进行判断即可.
【详解】
解: ①三角形的内角和等于180°,是三角形内角和定理,是命题;
②对顶角相等,是对顶角的性质,是命题;
③过一点作已知直线的垂线,是作图,不是命题;
④两点确定一条直线,是直线的性质,是命题,
综上所述,属于命题是①②④.
故选:B.
【点睛】
此题考查了命题的定义,解题的关键是能根据命题的定义对每一项进行判断.
5.C
【分析】
根据一副三角板的特征先得到∠E=60°,∠C=45°,∠1+∠2=90°,再根据已知求出∠1=60°,从而可证得AC∥DE,再根据平行线的性质即可求出∠4的度数.
【详解】
解:根据题意可知:∠E=60°,∠C=45°,∠1+∠2=90°,
∵,
∴∠1=60°,
∴∠1=∠E,
∴AC∥DE,
∴∠4=∠C=45°.
故选:C.
【点睛】
本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.
6.D
【分析】
分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可.
【详解】
解:①∵(±1)2=1,∴一个数的平方等于1,那么这个数就是1,故①错误;
②∵42=16,∴4是16的算术平方根,故②错误,
③平方根等于它本身的数只有0,故③正确,
④8的立方根是2,故④错误.
故选:D.
【点睛】
本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键.
7.B
【分析】
利用平行线的性质,角平分线的定义即可解决问题.
【详解】
解:∵,,平分,
∴,,
∵,
∴,
故选:B.
【点睛】
本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
8.C
【分析】
根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标.
【详解】
半径为1个单位长度的半圆的周长为:,
∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度
解析:C
【分析】
根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标.
【详解】
半径为1个单位长度的半圆的周长为:,
∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,
∴点P1秒走个半圆,
当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,-1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),
…,
可得移动4次图象完成一个循环,
∵2021÷4=505…1,
∴点P运动到2021秒时的坐标是(2021,1),
故选:C.
【点睛】
此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.
九、填空题
9.93
【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则
点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开
解析:93
【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则
点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开方数每缩小100倍,则算术平方根就缩小10倍;对于立方根,当被开方数每扩大1000倍,则算术平方根就扩大10倍,当被开方数每缩小1000倍,则算术平方根就缩小10倍.
十、填空题
10.【分析】
由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解.
【详解】
解:因为在第四象限,则,所以,
又因为关于y轴对称,x值相反,y值不变,
解析:
【分析】
由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解.
【详解】
解:因为在第四象限,则,所以,
又因为关于y轴对称,x值相反,y值不变,
所以点A关于y轴对称点坐标为.
故答案为.
【点睛】
本题考查点的坐标的意义和对称的特点.关键是掌握点的坐标的变化规律.
十一、填空题
11.8
【分析】
根据题意由平行线的性质得到∠ADF=∠DFC,再由DF平分∠ADC,得∠ADF=∠CDF,则∠DFC=∠FDC,然后由等腰三角形的判定得到CF=CD,同理BE=AB,则四边形ABCD是
解析:8
【分析】
根据题意由平行线的性质得到∠ADF=∠DFC,再由DF平分∠ADC,得∠ADF=∠CDF,则∠DFC=∠FDC,然后由等腰三角形的判定得到CF=CD,同理BE=AB,则四边形ABCD是平行四边形,最后由平行四边形的性质得到AB=CD,AD=BC,即可得到结论.
【详解】
解:∵AD∥BC,
∴∠ADF=∠DFC,
∵DF平分∠ADC,
∴∠ADF=∠CDF,
∴∠DFC=∠CDF,
∴CF=CD,
同理BE=AB,
∵AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∴AB=BE=CF=CD=5,
∴BC=BE+CF﹣EF=5+5﹣2=8,
∴AD=BC=8,
故答案为:8.
【点睛】
本题考查等腰三角形的判定和性质和平行线的性质以及平行四边形的性质等知识,解答本题的关键是熟练掌握平行线的性质以及平行四边形的性质.
十二、填空题
12.68°
【分析】
先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小.
【详解】
解:∵AD//BC,,
∴∠DEF=∠EFG=56°,
由折叠可得,∠GEF
解析:68°
【分析】
先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小.
【详解】
解:∵AD//BC,,
∴∠DEF=∠EFG=56°,
由折叠可得,∠GEF=∠DEF=56°,
∴∠DEG=112°,
∴∠AEG=180°-112°=68°.
故答案为:68°.
【点睛】
本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.
十三、填空题
13.64
【分析】
如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解.
【详解】
解:∵长方形的对边互相平行,
∴∠3=180°﹣∠1=180°﹣128°=52°,
由翻
解析:64
【分析】
如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解.
【详解】
解:∵长方形的对边互相平行,
∴∠3=180°﹣∠1=180°﹣128°=52°,
由翻折的性质得,∠2(180°﹣∠3)(180°﹣52°)=64°.
故答案为:64.
【点睛】
本题考查了平行线的性质,翻折变换的性质,熟记各性质是解题的关键.
十四、填空题
14.1
【分析】
根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果.
【详解】
解析:1
【分析】
根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果.
【详解】
解:∵4<7<9,
∴2<<3,∴-3<-<-2,
∴7<5+<8,2<5-<3,
∴5+的整数部分是7,5-的整数部分为2,
∴a=5+-7=-2,b=5--2=3-,
∴12019=1.
故答案为:1.
【点睛】
此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.
十五、填空题
15.(-4,8)
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解.
【详解】
解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,
∴-2a
解析:(-4,8)
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解.
【详解】
解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,
∴-2a+2-3a=12,
解得a=-2,
∴2a=-4,2-3a=8,
∴点P的坐标为(-4,8).
故答案为:(-4,8).
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
十六、填空题
16.【分析】
由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.
【详解】
解:观察图形可知,
点的横坐标依次是0、1、2、3、4、
解析:
【分析】
由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.
【详解】
解:观察图形可知,
点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,
,
故点坐标是.
故答案是:.
【点睛】
本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律.
十七、解答题
17.(1)0;(2)-3.
【分析】
(1)原式利用平方根、立方根定义计算即可得到结果;
(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.
【详解】
解:(1)原式=3-6-
解析:(1)0;(2)-3.
【分析】
(1)原式利用平方根、立方根定义计算即可得到结果;
(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.
【详解】
解:(1)原式=3-6-(-3)=3-6+3=0;
(2)原式= -1+(-8)× -(-3)×(- )=-1-1-1=-3.
故答案为(1)0;(2)-3.
【点睛】
本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键.
十八、解答题
18.(1)25;(2)37
【分析】
(1)利用完全平方差公式求解.
(2)先配方,再求值.
【详解】
解:(1)
(2)
【点睛】
本题考查完全平方公式及其变形式,根据公式特征进行变形是求解
解析:(1)25;(2)37
【分析】
(1)利用完全平方差公式求解.
(2)先配方,再求值.
【详解】
解:(1)
(2)
【点睛】
本题考查完全平方公式及其变形式,根据公式特征进行变形是求解本题的关键.
十九、解答题
19.∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE
【分析】
过点作,则∠1,同理可以得到∠2,由此即可求解.
【详解】
解:,
解析:∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE
【分析】
过点作,则∠1,同理可以得到∠2,由此即可求解.
【详解】
解:,理由如下:
过点作,
则∠1(两直线平行,内错角相等),
又∵,,
∴DE∥CF(平行于同一条直线的两直线平行),
∴∠2(两直线平行,内错角相等)
∴(等量代换)
即∠BCE,
故答案为:∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE.
【点睛】
本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
二十、解答题
20.(1)见解析;(2)见解析,A1(-2,-1).
【分析】
(1)先根据坐标描出A、B、C三点,然后顺次连接即可;
(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐
解析:(1)见解析;(2)见解析,A1(-2,-1).
【分析】
(1)先根据坐标描出A、B、C三点,然后顺次连接即可;
(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐标即可.
【详解】
解:(1)如图:△ABC即为所求;
(2)如图:即为所求,点A1的坐标为(-2,-1).
【点睛】
本题主要考查了坐标与图形、图形的平移等知识点,根据坐标描出图形是解答本题的关键.
二十一、解答题
21.(1),.
(2).
【分析】
(1)首先得出接近的整数,进而得出a,b的值;
(2)根据平方根即可解答.
【详解】
,
∴整数部分,小数部分.
(2)
原式
,
则的平方根为.
【点睛】
此题
解析:(1),.
(2).
【分析】
(1)首先得出接近的整数,进而得出a,b的值;
(2)根据平方根即可解答.
【详解】
,
∴整数部分,小数部分.
(2)
原式
,
则的平方根为.
【点睛】
此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.
二十二、解答题
22.(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:
解析:(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:
,
解得:,
∴长是1.5m,宽是0.5m.
(2)∵正方形的面积为7平方米,
∴正方形的边长是米,
∵<3,
∴他不能剪出符合要求的桌布.
【点睛】
本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.
二十三、解答题
23.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.
解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.
【分析】
(1)根据平行线的判定与性质即可完成填空;
(2)结合(1)的辅助线方法即可完成证明;
(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.
【详解】
解:过点P作直线PH∥AB,
所以∠A=∠APH,依据是两直线平行,内错角相等;
因为AB∥CD,PH∥AB,
所以PH∥CD,依据是平行于同一条直线的两条直线平行;
所以∠C=(∠CPH),
所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.
故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;
(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:
过点P作直线PH∥AB,QG∥AB,
∵AB∥CD,
∴AB∥CD∥PH∥QG,
∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,
∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.
∴∠APQ+∠PQC=∠A+∠C+180°成立;
②如图3,
过点P作直线PH∥AB,QG∥AB,MN∥AB,
∵AB∥CD,
∴AB∥CD∥PH∥QG∥MN,
∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,
∴∠PMQ=∠HPM+∠GQM,
∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,
∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),
∴3∠PMQ+∠A+∠C=360°.
【点睛】
考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.
二十四、解答题
24.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析
【分析】
(1)用角的度数除以转动速度即可得;
(2)求出∠AON=60°,结合旋转速度可得时间t;
(3)设∠AON=3
解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析
【分析】
(1)用角的度数除以转动速度即可得;
(2)求出∠AON=60°,结合旋转速度可得时间t;
(3)设∠AON=3t,则∠AOC=30°+6t,由题意列出方程,解方程即可;
(4)根据转动速度关系和OC平分∠MOB,由题意列出方程,解方程即可.
【详解】
解:(1)∵30÷3=10,
∴10秒后ON与OC重合;
(2)∵MN∥AB
∴∠BOM=∠M=30°,
∵∠AON+∠BOM=90°,
∴∠AON=60°,
∴t=60÷3=20
∴经过t秒后,MN∥AB,t=20秒.
(3)如图3所示:
∵∠AON+∠BOM=90°,∠BOC=∠BOM,
∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,
设∠AON=3t,则∠AOC=30°+6t,
∵OC与OM重合,
∵∠AOC+∠BOC=180°,
可得:(30°+6t)+(90°-3t)=180°,
解得:t=20秒;
即经过20秒时间OC与OM重合;
(4)如图4所示:
∵∠AON+∠BOM=90°,∠BOC=∠COM,
∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,
设∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,
∴∠BOC=∠COM=∠BOM=(90°-3t),
由题意得:180°-(30°+6t)=( 90°-3t),
解得:t=秒,
即经过秒OC平分∠MOB.
【点睛】
此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.
二十五、解答题
25.(1)互相平行;(2)35,20;(3)见解析;(4)不变,
【分析】
(1)根据平行线的判定定理即可得到结论;
(2)根据角平分线的定义和平行线的性质即可得到结论;
(3)根据角平分线的定义和平行
解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,
【分析】
(1)根据平行线的判定定理即可得到结论;
(2)根据角平分线的定义和平行线的性质即可得到结论;
(3)根据角平分线的定义和平行线的性质即可得到结论;
(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.
【详解】
解:(1)直线l2⊥l1,l3⊥l1,
∴l2∥l3,
即l2与l3的位置关系是互相平行,
故答案为:互相平行;
(2)∵CE平分∠BCD,
∴∠BCE=∠DCE=BCD,
∵∠BCD=70°,
∴∠DCE=35°,
∵l2∥l3,
∴∠CED=∠DCE=35°,
∵l2⊥l1,
∴∠CAD=90°,
∴∠ADC=90°﹣70°=20°;
故答案为:35,20;
(3)∵CF平分∠BCD,
∴∠BCF=∠DCF,
∵l2⊥l1,
∴∠CAD=90°,
∴∠BCF+∠AGC=90°,
∵CD⊥BD,
∴∠DCF+∠CFD=90°,
∴∠AGC=∠CFD,
∵∠AGC=∠DGF,
∴∠DGF=∠DFG;
(4)∠N:∠BCD的值不会变化,等于;理由如下:
∵l2∥l3,
∴∠BED=∠EBH,
∵∠DBE=∠DEB,
∴∠DBE=∠EBH,
∴∠DBH=2∠DBE,
∵∠BCD+∠BDC=∠DBH,
∴∠BCD+∠BDC=2∠DBE,
∵∠N+∠BDN=∠DBE,
∴∠BCD+∠BDC=2∠N+2∠BDN,
∵DN平分∠BDC,
∴∠BDC=2∠BDN,
∴∠BCD=2∠N,
∴∠N:∠BCD=.
【点睛】
本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.
展开阅读全文