资源描述
2022年人教版七7年级下册数学期末解答题考试题附答案
一、解答题
1.(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_______;
(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_____(填“”或“”或“”号);
(3)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?
2.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)
3.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.
(1)求正方形工料的边长;
(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:=1.414,=1.732,=2.236)
4.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.
(1)拼成的正方形的面积与边长分别是多少?
(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少?
(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长
5.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题.
(1)阴影正方形的面积是________?(可利用割补法求面积)
(2)阴影正方形的边长是________?
(3)阴影正方形的边长介于哪两个整数之间?请说明理由.
二、解答题
6.如图1,//,点、分别在、上,点在直线、之间,且.
(1)求的值;
(2)如图2,直线分别交、的角平分线于点、,直接写出的值;
(3)如图3,在内,;在内,,直线分别交、分别于点、,且,直接写出的值.
7.已知,定点,分别在直线,上,在平行线,之间有一动点.
(1)如图1所示时,试问,,满足怎样的数量关系?并说明理由.
(2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明
(3)当满足,且,分别平分和,
①若,则__________°.
②猜想与的数量关系.(直接写出结论)
8.综合与实践
背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.
已知:AM∥CN,点B为平面内一点,AB⊥BC于B.
问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC= .
9.已知,点在与之间.
(1)图1中,试说明:;
(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:.
(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系.
10.已知,点为平面内一点,于.
(1)如图1,求证:;
(2)如图2,过点作的延长线于点,求证:;
(3)如图3,在(2)问的条件下,点、在上,连接、、,且平分,平分,若,,求的度数.
三、解答题
11.已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且.
(1)将直角如图1位置摆放,如果,则________;
(2)将直角如图2位置摆放,N为上一点,,请写出与之间的等量关系,并说明理由;
(3)将直角如图3位置摆放,若,延长交直线b于点Q,点P是射线上一动点,探究与的数量关系,请直接写出结论.
12.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视.若灯转动的速度是每秒2度,灯转动的速度是每秒1度.假定主道路是平行的,即,且.
(1)填空:_________;
(2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行?
(3)如图2,若两灯同时转动,在灯射线到达之前.若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.
13.如图1,,E是、之间的一点.
(1)判定,与之间的数量关系,并证明你的结论;
(2)如图2,若、的两条平分线交于点F.直接写出与之间的数量关系;
(3)将图2中的射线沿翻折交于点G得图3,若的余角等于的补角,求的大小.
14.如图,,平分,设为,点E是射线上的一个动点.
(1)若时,且,求的度数;
(2)若点E运动到上方,且满足,,求的值;
(3)若,求的度数(用含n和的代数式表示).
15.问题情境
(1)如图1,已知,,,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得________.
问题迁移
(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,,,与相交于点,有一动点在边上运动,连接,,记,.
①如图2,当点在,两点之间运动时,请直接写出与,之间的数量关系;
②如图3,当点在,两点之间运动时,与,之间有何数量关系?请判断并说明理由;拓展延伸
(3)当点在,两点之间运动时,若,的角平分线,相交于点,请直接写出与,之间的数量关系.
四、解答题
16.如图,在中,与的角平分线交于点.
(1)若,则 ;
(2)若,则 ;
(3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则 .
17.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,.
(1)= ;
(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;
(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,,且,求n的值.
18.如图,直线,一副直角三角板中,.
(1)若如图1摆放,当平分时,证明:平分.
(2)若如图2摆放时,则
(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.
(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.
(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.
19.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处.
(1)若,________.
(2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论.
②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明.
(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________.
20.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?
(特殊化)
(1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数;
(2)当∠1=70°,求∠EPB的度数;
(一般化)
(3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示).
【参考答案】
一、解答题
1.(1);(2);(3)不能裁剪出,详见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形
解析:(1);(2);(3)不能裁剪出,详见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;
(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;
【详解】
解:(1)∵小正方形的边长为1cm,
∴小正方形的面积为1cm2,
∴两个小正方形的面积之和为2cm2,
即所拼成的大正方形的面积为2 cm2,
∴大正方形的边长为cm,
(2)∵,
∴,
∴,
设正方形的边长为a
∵,
∴,
∴,
∴
故答案为:<;
(3)解:不能裁剪出,理由如下:
∵长方形纸片的长和宽之比为,
∴设长方形纸片的长为,宽为,
则,
整理得:,
∴,
∵450>400,
∴,
∴,
∴长方形纸片的长大于正方形的边长,
∴不能裁出这样的长方形纸片.
【点睛】
本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.
2.选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答
解析:选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.
【详解】
解:选择建成圆形草坪的方案,理由如下:
设建成正方形时的边长为x米,
由题意得:x2=81,
解得:x=±9,
∵x>0,
∴x=9,
∴正方形的周长为4×9=36,
设建成圆形时圆的半径为r米,
由题意得:πr2=81.
解得:,
∵r>0.
∴,
∴圆的周长=,
∵,
∴,
∴建成圆形草坪时所花的费用较少,
故选择建成圆形草坪的方案.
【点睛】
本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.
3.(1)正方形工料的边长是 5 分米;
(2)这块正方形工料不合格,理由见解析.
【详解】
试题分析:(1)根据正方形的面积公式求出的值即可;
(2)设长方形的长宽分别为3x分米、2x分米,得出方程3
解析:(1)正方形工料的边长是 5 分米;
(2)这块正方形工料不合格,理由见解析.
【详解】
试题分析:(1)根据正方形的面积公式求出的值即可;
(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出x=,再求出长方形的长和宽和5比较即可得出答案.
试题解析:(1)∵正方形的面积是 25 平方分米,
∴正方形工料的边长是 5 分米;
(2)设长方形的长宽分别为 3x 分米、2x 分米,
则 3x•2x=18,
x2=3,
x1= ,x2=(舍去),
3x=3>5,2x=2<5 ,
即这块正方形工料不合格.
4.(1)5;;(2);;(3)能,.
【分析】
(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.
(2)求出斜边长即可.
(3)一共有10个小正
解析:(1)5;;(2);;(3)能,.
【分析】
(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.
(2)求出斜边长即可.
(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图.
【详解】
试题分析:
解:(1)拼成的正方形的面积与原面积相等1×1×5=5,
边长为,
如图(1)
(2)斜边长=,
故点A表示的数为:;点A表示的相反数为:
(3)能,如图
拼成的正方形的面积与原面积相等1×1×10=10,边长为.
考点:1.作图—应用与设计作图;2.图形的剪拼.
5.(1)5;(2);(3)2与3两个整数之间,见解析
【分析】
(1)通过割补法即可求出阴影正方形的面积;
(2)根据实数的性质即可求解;
(3)根据实数的估算即可求解.
【详解】
(1)阴影正方形的
解析:(1)5;(2);(3)2与3两个整数之间,见解析
【分析】
(1)通过割补法即可求出阴影正方形的面积;
(2)根据实数的性质即可求解;
(3)根据实数的估算即可求解.
【详解】
(1)阴影正方形的面积是3×3-4×=5
故答案为:5;
(2)设阴影正方形的边长为x,则x2=5
∴x=(-舍去)
故答案为:;
(3)∵
∴
∴阴影正方形的边长介于2与3两个整数之间.
【点睛】
本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小.
二、解答题
6.(1) ;(2)的值为40°;(3).
【分析】
(1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解;
(2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM
解析:(1) ;(2)的值为40°;(3).
【分析】
(1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解;
(2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,进而求解;
(3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得
即可得关于n的方程,计算可求解n值.
【详解】
证明:过点O作OG∥AB,
∵AB∥CD,
∴AB∥OG∥CD,
∴
∴
即
∵∠EOF=100°,
∴∠;
(2)解:过点M作MK∥AB,过点N作NH∥CD,
∵EM平分∠BEO,FN平分∠CFO,
设
∵
∴
∴x-y=40°,
∵MK∥AB,NH∥CD,AB∥CD,
∴AB∥MK∥NH∥CD,
∴
∴
=x-y
=40°,
故的值为40°;
(3)如图,设直线FK与EG交于点H,FK与AB交于点K,
∵AB∥CD,
∴
∵
∴
∵
∴
即
∵FK在∠DFO内,
∴ ,
∵
∴
∴
即
∴
解得 .
经检验,符合题意,
故答案为:.
【点睛】
本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键.
7.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF
【分析】
(1)由于点是平行线,之间
解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF
【分析】
(1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,,,满足数量关系为:;
(2)当点在的右侧时,,,满足数量关系为:;
(3)①若当点在的左侧时,;当点在的右侧时,可求得;
②结合①可得,由,得出;可得,由,得出.
【详解】
解:(1)如图1,过点作,
,
,
,
,
,
;
(2)如图2,当点在的右侧时,,,满足数量关系为:;
过点作,
,
,
,
,
,
;
(3)①如图3,若当点在的左侧时,
,
,
,分别平分和,
,,
;
如图4,当点在的右侧时,
,
,
;
故答案为:或30;
②由①可知:,
;
,
.
综合以上可得与的数量关系为:或.
【点睛】
本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.
8.(1);(2)见解析;(3)105°
【分析】
(1)通过平行线性质和直角三角形内角关系即可求解.
(2)过点B作BG∥DM,根据平行线找角的联系即可求解.
(3)利用(2)的结论,结合角平分线性质
解析:(1);(2)见解析;(3)105°
【分析】
(1)通过平行线性质和直角三角形内角关系即可求解.
(2)过点B作BG∥DM,根据平行线找角的联系即可求解.
(3)利用(2)的结论,结合角平分线性质即可求解.
【详解】
解:(1)如图1,设AM与BC交于点O,∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠ABC=90°,
∴∠A+∠AOB=90°,
∠A+∠C=90°,
故答案为:∠A+∠C=90°;
(2)证明:如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,
∴∠DBG=90°,
∴∠ABD+∠ABG=90°,
∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,
∴∠C=∠CBG,
∴∠ABD=∠C;
(3)如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)知∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,
则∠ABE=α,∠ABD=2α=∠CBG,
∠GBF=∠AFB=β,
∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,
∵AB⊥BC,
∴β+β+2α=90°,
∴α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
故答案为:105°.
【点睛】
本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.
9.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.
【分析】
(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,
解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.
【分析】
(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;
(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;
(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.
【详解】
解:(1)如图1中,过点E作EG∥AB,
则∠BEG=∠ABE,
因为AB∥CD,EG∥AB,
所以CD∥EG,
所以∠DEG=∠CDE,
所以∠BEG+∠DEG=∠ABE+∠CDE,
即∠BED=∠ABE+∠CDE;
(2)图2中,因为BF平分∠ABE,
所以∠ABE=2∠ABF,
因为DF平分∠CDE,
所以∠CDE=2∠CDF,
所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),
由(1)得:因为AB∥CD,
所以∠BED=∠ABE+∠CDE,
∠BFD=∠ABF+∠CDF,
所以∠BED=2∠BFD.
(3)∠BED=360°-2∠BFD.
图3中,过点E作EG∥AB,
则∠BEG+∠ABE=180°,
因为AB∥CD,EG∥AB,
所以CD∥EG,
所以∠DEG+∠CDE=180°,
所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),
即∠BED=360°-(∠ABE+∠CDE),
因为BF平分∠ABE,
所以∠ABE=2∠ABF,
因为DF平分∠CDE,
所以∠CDE=2∠CDF,
∠BED=360°-2(∠ABF+∠CDF),
由(1)得:因为AB∥CD,
所以∠BFD=∠ABF+∠CDF,
所以∠BED=360°-2∠BFD.
【点睛】
本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.
10.(1)见解析;(2)见解析;(3).
【分析】
(1)先根据平行线的性质得到,然后结合即可证明;
(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可;
(3)设∠DBE=a,则∠BFC=3
解析:(1)见解析;(2)见解析;(3).
【分析】
(1)先根据平行线的性质得到,然后结合即可证明;
(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可;
(3)设∠DBE=a,则∠BFC=3a,根据角平分线的定义可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根据三角形内角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度数表达式,再根据平行的性质可得∠AFC+∠NCF=180°,代入即可算出a的度数,进而完成解答.
【详解】
(1)证明:∵,
∴,
∵于,
∴,
∴,
∴;
(2)证明:过作,
∵,
∴,
又∵,
∴,
∴,
∵,
∴,
∴,
∴;
(3)设∠DBE=a,则∠BFC=3a,
∵BE平分∠ABD,
∴∠ABD=∠C=2a,
又∵AB⊥BC,BF平分∠DBC,
∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45°
又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°
∴∠BCF=135°-4a,
∴∠AFC=∠BCF=135°-4a,
又∵AM//CN,
∴∠AFC+∠ NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,
∴135°-4a+135°-4a+2a=180,解得a=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
【点睛】
本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.
三、解答题
11.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析
【分析】
(1)作CP//a,则CP//a//b,根据平行线的性质求解.
(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N
解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析
【分析】
(1)作CP//a,则CP//a//b,根据平行线的性质求解.
(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.
(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.
【详解】
解:(1)如图,作CP//a,
∵a//b,CP//a,
∴CP//a//b,
∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,
∴∠BCP=180°-∠CEF,
∵∠ACP+∠BCP=90°,
∴∠AOG+180°-∠CEF=90°,
∴∠CEF=180°-90°+∠AOG=146°.
(2)∠AOG+∠NEF=90°.理由如下:
如图,作CP//a,则CP//a//b,
∴∠AOG=∠ACP,∠BCP+∠CEF=180°,
∵∠NEF+∠CEF=180°,
∴∠BCP=∠NEF,
∵∠ACP+∠BCP=90°,
∴∠AOG+∠NEF=90°.
(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,
∴∠GOP=∠OPN,∠PQF=∠NPQ,
∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,
∵∠GOC=∠GOP+∠POQ=135°,
∴∠GOP=135°-∠POQ,
∴∠OPQ=135°-∠POQ+∠PQF.
如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b,
∴∠GOP=∠OPN,∠PQF=∠NPQ,
∵∠OPN=∠OPQ+∠QPN,
∴∠GOP=∠OPQ+∠PQF,
∴135°-∠POQ=∠OPQ+∠PQF.
【点睛】
本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.
12.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD
【分析】
(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;
(2)设A灯转动t秒,
解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD
【分析】
(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;
(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;
(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.
【详解】
解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,
∴∠BAN=180°×=72°,
故答案为:72;
(2)设A灯转动t秒,两灯的光束互相平行,
①当0<t<90时,如图1,
∵PQ∥MN,
∴∠PBD=∠BDA,
∵AC∥BD,
∴∠CAM=∠BDA,
∴∠CAM=∠PBD
∴2t=1•(30+t),
解得 t=30;
②当90<t<150时,如图2,
∵PQ∥MN,
∴∠PBD+∠BDA=180°,
∵AC∥BD,
∴∠CAN=∠BDA
∴∠PBD+∠CAN=180°
∴1•(30+t)+(2t-180)=180,
解得 t=110,
综上所述,当t=30秒或110秒时,两灯的光束互相平行;
(3)∠BAC和∠BCD关系不会变化.
理由:设灯A射线转动时间为t秒,
∵∠CAN=180°-2t,
∴∠BAC=72°-(180°-2t)=2t-108°,
又∵∠ABC=108°-t,
∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,
∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,
∴∠BAC:∠BCD=2:1,
即∠BAC=2∠BCD,
∴∠BAC和∠BCD关系不会变化.
【点睛】
本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.
13.(1),见解析;(2);(3)60°
【分析】
(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;
(2)如图2,
解析:(1),见解析;(2);(3)60°
【分析】
(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;
(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,根据角平分线的定义得到∠BAF=∠BAE,∠CDF=∠CDE,则∠AFD=(∠BAE+∠CDE),加上(1)的结论得到∠AFD=∠AED;
(3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用等量代换得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,从而可计算出∠BAE的度数.
【详解】
解:(1)
理由如下:
作,如图1,
,
.
,,
;
(2)如图2,由(1)的结论得,
、的两条平分线交于点F,
,,
,
,
;
(3)由(1)的结论得,
而射线沿翻折交于点G,
,
,
,
,
.
【点睛】
本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
14.(1)60°;(2)50°;(3)或
【分析】
(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;
(2)根据题意画出图形,先
解析:(1)60°;(2)50°;(3)或
【分析】
(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;
(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;
(3)根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,,列出等量关系求解即可等处结论;②若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论.
【详解】
解:(1),,
,
平分,
,
,
又,
;
(2)根据题意画图,如图1所示,
,,
,
,
,
,
又平分,
,
;
(3)①如图2所示,
,
,
平分,
,
,
又,
,
,
解得;
②如图3所示,
,
,
平分,
,
,
又,
,
,
解得.
综上的度数为或.
【点睛】
本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键.
15.(1);(2)①,②,理由见解析;(3)
【分析】
(1)过点作,则,由平行线的性质可得的度数;
(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系;
②过作,依据平行线的性质可得,,即
解析:(1);(2)①,②,理由见解析;(3)
【分析】
(1)过点作,则,由平行线的性质可得的度数;
(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系;
②过作,依据平行线的性质可得,,即可得到;
(3)过和分别作的平行线,依据平行线的性质以及角平分线的定义,即可得到与,之间的数量关系为.
【详解】
解:(1)如图1,过点作,则,
由平行线的性质可得,,
又∵,,
∴,
故答案为:;
(2)①如图2,与,之间的数量关系为;
过点P作PM∥FD,则PM∥FD∥CG,
∵PM∥FD,
∴∠1=∠α,
∵PM∥CG,
∴∠2=∠β,
∴∠1+∠2=∠α+∠β,
即:,
②如图,与,之间的数量关系为;理由:
过作,
∵,
∴,
∴,,
∴;
(3)如图,
由①可知,∠N=∠3+∠4,
∵EN平分∠DEP,AN平分∠PAC,
∴∠3=∠α,∠4=∠β,
∴,
∴与,之间的数量关系为.
【点睛】
本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.
四、解答题
16.(1)110(2)(90 +n)(3)×90°+n°
【分析】
(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;
(2)根据BO、CO分别是∠ABC与∠ACB的角平
解析:(1)110(2)(90 +n)(3)×90°+n°
【分析】
(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;
(2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数;
(3)根据规律直接计算即可.
【详解】
解:(1)∵∠A=40°,
∴∠ABC+∠ACB=140°,
∵点O是∠AB故答案为:110°;C与∠ACB的角平分线的交点,
∴∠OBC+∠OCB=70°,
∴∠BOC=110°.
(2)∵∠A=n°,
∴∠ABC+∠ACB=180°-n°,
∵BO、CO分别是∠ABC与∠ACB的角平分线,
∴∠OBC+∠OCB=∠ABC+∠ACB
=(∠ABC+∠ACB)
=(180°﹣n°)
=90°﹣n°,
∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°.
故答案为:(90+n);
(3)由(2)得∠O=90°+n°,
∵∠ABO的平分线与∠ACO的平分线交于点O1,
∴∠O1BC=∠ABC,∠O1CB=∠ACB,
∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°,
同理,∠O2=×180°+n°,
∴∠On=×180°+ n°,
∴∠O2017=×180°+n°,
故答案为:×90°+n°.
【点睛】
本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.
17.(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB
解析:(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;
(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可;
(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n.
【详解】
解:(1)如图:过O作OP//MN,
∵MN//GHl
∴MN//OP//GH
∴∠NAO+∠POA=180°,∠POB+∠OBH=180°
∴∠NAO+∠AOB+∠OBH=360°
∵∠NAO=116°,∠OBH=144°
∴∠AOB=360°-116°
展开阅读全文