资源描述
人教版七年级下册数学期末解答题培优(含答案)
一、解答题
1.如图,用两个面积为的小正方形纸片剪拼成一个大的正方形.
(1)大正方形的边长是________;
(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为的长方形纸片,使它的长宽之比为,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.
2.(1)若一圆的面积与这个正方形的面积都是,设圆的周长为,正方形的周长为,则______.(填“=”或“<”或“>”号)
(2)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由.
3.如图是一块正方形纸片.
(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为 dm.
(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆 C正(填“=”或“<”或“>”号)
(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?
4.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)
5.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.
(1)请求出图中阴影部分(正方形)的面积和边长
(2)若边长的整数部分为,小数部分为,求的值.
二、解答题
6.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由).
(2)如图②中,AB//CD,又能得出什么结论?请直接写出结论 .
(3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为 .
7.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF.
(1)求证:∠ABF+∠DCF=∠BFC;
(2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD;
(3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数.
8.问题情境:
如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.
问题解决:
(1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由;
(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出∠APC、α、B之间的数量关系;
(3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC的度数.
9.已知,点在与之间.
(1)图1中,试说明:;
(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:.
(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系.
10.已知,点为平面内一点,于.
(1)如图1,求证:;
(2)如图2,过点作的延长线于点,求证:;
(3)如图3,在(2)问的条件下,点、在上,连接、、,且平分,平分,若,,求的度数.
三、解答题
11.已知,点为平面内一点,于.
(1)如图1,点在两条平行线外,则与之间的数量关系为______;
(2)点在两条平行线之间,过点作于点.
①如图2,说明成立的理由;
②如图3,平分交于点平分交于点.若,求的度数.
12.[感知]如图①,,求的度数.
小乐想到了以下方法,请帮忙完成推理过程.
解:(1)如图①,过点P作.
∴(_____________),
∴,
∴________(平行于同一条直线的两直线平行),
∴_____________(两直线平行,同旁内角互补),
∴,
∴,
∴,即.
[探究]如图②,,求的度数;
[应用](1)如图③,在[探究]的条件下,的平分线和的平分线交于点G,则的度数是_________º.
(2)已知直线,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接,若平分平分,且所在的直线交于点E.设,请直接写出的度数(用含的式子表示).
13.为更好地理清平行线相关角的关系,小明爸爸为他准备了四根细直木条、、、,做成折线,如图1,且在折点B、C、D处均可自由转出.
(1)如图2,小明将折线调节成,,,判断是否平行于,并说明理由;
(2)如图3,若,调整线段、使得求出此时的度数,要求画出图形,并写出计算过程.
(3)若,,,请直接写出此时的度数.
14.如图,已知是直线间的一点,于点交于点.
(1)求的度数;
(2)如图2,射线从出发,以每秒的速度绕P点按逆时针方向旋转,当垂直时,立刻按原速返回至后停止运动:射线从出发,以每秒的速度绕E点按逆时针方向旋转至后停止运动,若射线,射线同时开始运动,设运动间为t秒.
①当时,求的度数;
②当时,求t的值.
15.如图1,,E是、之间的一点.
(1)判定,与之间的数量关系,并证明你的结论;
(2)如图2,若、的两条平分线交于点F.直接写出与之间的数量关系;
(3)将图2中的射线沿翻折交于点G得图3,若的余角等于的补角,求的大小.
四、解答题
16.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC的面积记为S2.则S1=S2.
解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 .
拓展延伸:
(1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为 .
(2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 .
17.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;
(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为: ;
(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.
(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为: .
18.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;
【问题迁移】
如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.
(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °.
(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC与α、β之间的数量关系,并说明理由.
(图1) (图2)
19.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)仔细观察,在图2中有 个以线段AC为边的“8字形”;
(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数;
(3)在图2中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;
(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为 .
20.如图,直线,一副直角三角板中,.
(1)若如图1摆放,当平分时,证明:平分.
(2)若如图2摆放时,则
(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.
(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.
(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.
【参考答案】
一、解答题
1.(1)4;(2)不能,理由见解析.
【分析】
(1)根据已知正方形的面积求出大正方形的边长即可;
(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再
解析:(1)4;(2)不能,理由见解析.
【分析】
(1)根据已知正方形的面积求出大正方形的边长即可;
(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.
【详解】
解:(1)两个正方形面积之和为:2×8=16(cm2),
∴拼成的大正方形的面积=16(cm2),
∴大正方形的边长是4cm;
故答案为:4;
(2)设长方形纸片的长为2xcm,宽为xcm,
则2x•x=14,
解得:,
2x=2>4,
∴不存在长宽之比为且面积为的长方形纸片.
【点睛】
本题考查了算术平方根,能够根据题意列出算式是解此题的关键.
2.(1)<;(2)不能,理由见解析
【分析】
(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;
(2)设裁出的长方形的长为,宽为,由题意得关于
解析:(1)<;(2)不能,理由见解析
【分析】
(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;
(2)设裁出的长方形的长为,宽为,由题意得关于的方程,解得的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案.
【详解】
解:(1)圆的面积与正方形的面积都是,
圆的半径为,正方形的边长为,
,,
,
,
.
(2)不能裁出长和宽之比为的长方形,理由如下:
设裁出的长方形的长为,宽为,由题意得:
,
解得或(不合题意,舍去),
长为,宽为,
正方形的面积为,
正方形的边长为,
,
不能裁出长和宽之比为的长方形.
【点睛】
本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键.
3.(1);(2)<;(3)不能;理由见解析.
【分析】
(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;
(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;
(3)采
解析:(1);(2)<;(3)不能;理由见解析.
【分析】
(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;
(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;
(3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.
【详解】
解:(1)由已知AB2=1,则AB=1,
由勾股定理,AC=;
故答案为:.
(2)由圆面积公式,可得圆半径为,周长为,正方形周长为4.
;即C圆<C正;
故答案为:<
(3)不能;
由已知设长方形长和宽为3xcm和2xcm
∴长方形面积为:2x•3x=12
解得x=
∴长方形长边为3>4
∴他不能裁出.
【点睛】
本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.
4.选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答
解析:选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.
【详解】
解:选择建成圆形草坪的方案,理由如下:
设建成正方形时的边长为x米,
由题意得:x2=81,
解得:x=±9,
∵x>0,
∴x=9,
∴正方形的周长为4×9=36,
设建成圆形时圆的半径为r米,
由题意得:πr2=81.
解得:,
∵r>0.
∴,
∴圆的周长=,
∵,
∴,
∴建成圆形草坪时所花的费用较少,
故选择建成圆形草坪的方案.
【点睛】
本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.
5.(1)S=13,边长为 ;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
解析:(1)S=13,边长为 ;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
详解:解:(1)S=25-12=13, 边长为 ,
(2)a=3,b= -3 原式=9+-3-=6.
点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.
二、解答题
6.(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180°
【分析】
(1)过点E作EF//AB,利用平行线的性质则可得出
解析:(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180°
【分析】
(1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD;
(2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;
(3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论.
【详解】
解:(1)过点E作EF//AB,
∴∠B=∠BEF.
∵∠BEF+∠FED=∠BED,
∴∠B+∠FED=∠BED.
∵∠B+∠D=∠E(已知),
∴∠FED=∠D.
∴CD//EF(内错角相等,两直线平行).
∴AB//CD.
(2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,
∵AB∥CD,
∴AB∥EM∥FN∥GH∥CD,
∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,
∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,
即∠E+∠G=∠B+∠F+∠D.
由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,
∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.
故答案为:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.
(3)如图,过点M作EF∥AB,过点N作GH∥AB,
∴∠APM+∠PME=180°,
∵EF∥AB,GH∥AB,
∴EF∥GH,
∴∠EMN+∠MNG=180°,
∴∠1+∠2+∠MNG =180°×2,
依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°.
故答案为:(n-1)•180°.
【点睛】
本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.
7.(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.
【分析】
(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;
(2)由(1)的结论和垂直的定义解答即可;
解析:(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.
【分析】
(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;
(2)由(1)的结论和垂直的定义解答即可;
(3)由(1)的结论和三角形的角的关系解答即可.
【详解】
证明:(1)∵AB∥CD,EF∥CD,
∴AB∥EF,
∴∠ABF=∠BFE,
∵EF∥CD,
∴∠DCF=∠EFC,
∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;
(2)∵BE⊥EC,
∴∠BEC=90°,
∴∠EBC+∠BCE=90°,
由(1)可得:∠BFC=∠ABE+∠ECD=90°,
∴∠ABE+∠ECD=∠EBC+∠BCE,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ECD=∠BCE,
∴CE平分∠BCD;
(3)设∠BCE=β,∠ECF=γ,
∵CE平分∠BCD,
∴∠DCE=∠BCE=β,
∴∠DCF=∠DCE﹣∠ECF=β﹣γ,
∴∠EFC=β﹣γ,
∵∠BFC=∠BCF,
∴∠BFC=∠BCE+∠ECF=γ+β,
∴∠ABF=∠BFE=2γ,
∵∠FBG=2∠ECF,
∴∠FBG=2γ,
∴∠ABE+∠DCE=∠BEC=90°,
∴∠ABE=90°﹣β,
∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,
∵BE平分∠ABC,
∴∠CBE=∠ABE=90°﹣β,
∴∠CBG=∠CBE+∠GBE,
∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,
整理得:2γ+β=55°,
∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.
【点睛】
本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.
8.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°
【分析】
(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;
(2)分点P在线段MN或NM的延长线
解析:(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°
【分析】
(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;
(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;
(3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解.
【详解】
解:(1)如图2,过点P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=α,∠CPE=β,
∴∠APC=∠APE+∠CPE=α+β.
(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,
∵AB∥CD,∠PAB=α,
∴∠1=∠PAB=α,
∵∠1=∠APC+∠PCD,∠PCD=β,
∴α=∠APC+β,
∴∠APC=α-β;
如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,
∵AB∥CD,∠PCD=β,
∴∠2=∠PCD=β,
∵∠2=∠PAB+∠APC,∠PAB=α,
∴β=α+∠APC,
∴∠APC=β-α;
(3)如图3,过点P,Q分别作PE∥AB,QF∥AB,
∵AB∥CD,
∴AB∥QF∥PE∥CD,
∴∠BAP=∠APE,∠PCD=∠EPC,
∵∠APC=116°,
∴∠BAP+∠PCD=116°,
∵AQ平分∠BAP,CQ平分∠PCD,
∴∠BAQ=∠BAP,∠DCQ=∠PCD,
∴∠BAQ+∠DCQ=(∠BAP+∠PCD)=58°,
∵AB∥QF∥CD,
∴∠BAQ=∠AQF,∠DCQ=∠CQF,
∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°,
∴∠AQC=58°.
【点睛】
此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键.
9.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.
【分析】
(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,
解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.
【分析】
(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;
(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;
(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.
【详解】
解:(1)如图1中,过点E作EG∥AB,
则∠BEG=∠ABE,
因为AB∥CD,EG∥AB,
所以CD∥EG,
所以∠DEG=∠CDE,
所以∠BEG+∠DEG=∠ABE+∠CDE,
即∠BED=∠ABE+∠CDE;
(2)图2中,因为BF平分∠ABE,
所以∠ABE=2∠ABF,
因为DF平分∠CDE,
所以∠CDE=2∠CDF,
所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),
由(1)得:因为AB∥CD,
所以∠BED=∠ABE+∠CDE,
∠BFD=∠ABF+∠CDF,
所以∠BED=2∠BFD.
(3)∠BED=360°-2∠BFD.
图3中,过点E作EG∥AB,
则∠BEG+∠ABE=180°,
因为AB∥CD,EG∥AB,
所以CD∥EG,
所以∠DEG+∠CDE=180°,
所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),
即∠BED=360°-(∠ABE+∠CDE),
因为BF平分∠ABE,
所以∠ABE=2∠ABF,
因为DF平分∠CDE,
所以∠CDE=2∠CDF,
∠BED=360°-2(∠ABF+∠CDF),
由(1)得:因为AB∥CD,
所以∠BFD=∠ABF+∠CDF,
所以∠BED=360°-2∠BFD.
【点睛】
本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.
10.(1)见解析;(2)见解析;(3).
【分析】
(1)先根据平行线的性质得到,然后结合即可证明;
(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可;
(3)设∠DBE=a,则∠BFC=3
解析:(1)见解析;(2)见解析;(3).
【分析】
(1)先根据平行线的性质得到,然后结合即可证明;
(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可;
(3)设∠DBE=a,则∠BFC=3a,根据角平分线的定义可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根据三角形内角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度数表达式,再根据平行的性质可得∠AFC+∠NCF=180°,代入即可算出a的度数,进而完成解答.
【详解】
(1)证明:∵,
∴,
∵于,
∴,
∴,
∴;
(2)证明:过作,
∵,
∴,
又∵,
∴,
∴,
∵,
∴,
∴,
∴;
(3)设∠DBE=a,则∠BFC=3a,
∵BE平分∠ABD,
∴∠ABD=∠C=2a,
又∵AB⊥BC,BF平分∠DBC,
∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45°
又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°
∴∠BCF=135°-4a,
∴∠AFC=∠BCF=135°-4a,
又∵AM//CN,
∴∠AFC+∠ NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,
∴135°-4a+135°-4a+2a=180,解得a=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
【点睛】
本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.
三、解答题
11.(1)∠A+∠C=90°;(2)①见解析;②105°
【分析】
(1)根据平行线的性质以及直角三角形的性质进行证明即可;
(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥
解析:(1)∠A+∠C=90°;(2)①见解析;②105°
【分析】
(1)根据平行线的性质以及直角三角形的性质进行证明即可;
(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.
【详解】
解:(1)如图1,AM与BC的交点记作点O,
∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠A+∠AOB=90°,
∴∠A+∠C=90°;
(2)①如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,
∴∠DBG=90°,
∴∠ABD+∠ABG=90°,
∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,BG∥DM,
∴∠C=∠CBG,
∠ABD=∠C;
②如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)知∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,
则∠ABE=α,∠ABD=2α=∠CBG,
∠GBF=∠AFB=β,
∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°得:
2α+β+3α+3α+β=180°,
∵AB⊥BC,
∴β+β+2α=90°,
∴α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
【点睛】
本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.
12.[感知]见解析;[探究]70°;[应用](1)35;(2)或
【分析】
[感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;
解析:[感知]见解析;[探究]70°;[应用](1)35;(2)或
【分析】
[感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;
[探究]过点P作PM∥AB,根据AB∥CD,PM∥CD,进而根据平行线的性质即可求∠EPF的度数;
[应用](1)如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数;
(2)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解.
【详解】
解:[感知]如图①,过点P作PM∥AB,
∴∠1=∠AEP=40°(两直线平行,内错角相等)
∵AB∥CD,
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠2+∠PFD=180°(两直线平行,同旁内角互补),
∴∠PFD=130°(已知),
∴∠2=180°-130°=50°,
∴∠1+∠2=40°+50°=90°,即∠EPF=90°;
[探究]如图②,过点P作PM∥AB,
∴∠MPE=∠AEP=50°,
∵AB∥CD,
∴PM∥CD,
∴∠PFC=∠MPF=120°,
∴∠EPF=∠MPF-∠MPE=120°-50°=70°;
[应用](1)如图③所示,
∵EG是∠PEA的平分线,FG是∠PFC的平分线,
∴∠AEG=∠AEP=25°,∠GFC=∠PFC=60°,
过点G作GM∥AB,
∴∠MGE=∠AEG=25°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴GM∥CD(平行于同一条直线的两直线平行),
∴∠GFC=∠MGF=60°(两直线平行,内错角相等).
∴∠G=∠MGF-∠MGE=60°-25°=35°.
故答案为:35.
(2)当点A在点B左侧时,
如图,故点E作EF∥AB,则EF∥CD,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵平分平分,,
∴∠ABE=∠BEF=,∠CDE=∠DEF=,
∴∠BED=∠BEF+∠DEF=;
当点A在点B右侧时,
如图,故点E作EF∥AB,则EF∥CD,
∴∠DEF=∠CDE,∠ABG=∠BEF,
∵平分平分,,
∴∠DEF=∠CDE=,∠ABG=∠BEF=,
∴∠BED=∠DEF-∠BEF=;
综上:∠BED的度数为或.
【点睛】
本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.
13.(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°
【分析】
(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得C
解析:(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°
【分析】
(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,进而可以判断AB平行于ED;
(2)根据题意作AB∥CD,即可∠B=∠C=35°;
(3)分别画图,根据平行线的性质计算出∠B的度数.
【详解】
解:(1)AB平行于ED,理由如下:
如图2,过点C作CF∥AB,
∴∠BCF=∠B=50°,
∵∠BCD=85°,
∴∠FCD=85°-50°=35°,
∵∠D=35°,
∴∠FCD=∠D,
∴CF∥ED,
∵CF∥AB,
∴AB∥ED;
(2)如图,即为所求作的图形.
∵AB∥CD,
∴∠ABC=∠C=35°,
∴∠B的度数为:35°;
∵A′B∥CD,
∴∠ABC+∠C=180°,
∴∠B的度数为:145°;
∴∠B的度数为:35°或145°;
(3)如图2,过点C作CF∥AB,
∵AB∥DE,
∴CF∥DE,
∴∠FCD=∠D=35°,
∵∠BCD=85°,
∴∠BCF=85°-35°=50°,
∴∠B=∠BCF=50°.
答:∠B的度数为50°.
如图5,过C作CF∥AB,则AB∥CF∥CD,
∴∠FCD=∠D=35°,
∵∠BCD=85°,
∴∠BCF=85°-35°=50°,
∵AB∥CF,
∴∠B+∠BCF=180°,
∴∠B=130°;
如图6,∵∠C=85°,∠D=35°,
∴∠CFD=180°-85°-35°=60°,
∵AB∥DE,
∴∠B=∠CFD=60°,
如图7,同理得:∠B=35°+85°=120°,
综上所述,∠B的度数为50°或130°或60°或120°.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是区分平行线的判定与性质,并熟练运用.
14.(1);(2)①或;②秒或或秒
【分析】
(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;
(2)①当时,分两种情况,Ⅰ当在和之间,Ⅱ当在和之间,由,计算出的运动时间
解析:(1);(2)①或;②秒或或秒
【分析】
(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;
(2)①当时,分两种情况,Ⅰ当在和之间,Ⅱ当在和之间,由,计算出的运动时间,根据运动时间可计算出,由已知可计算出的度数;
②根据题意可知,当时,分三种情况,
Ⅰ射线由逆时针转动,,根据题意可知,,再平行线的性质可得,再根据三角形外角和定理可列等量关系,求解即可得出结论;
Ⅱ射线垂直时,再顺时针向运动时,,根据题意可知,,,,可计算射线的转动度数,再根据转动可列等量关系,即可求出答案;
Ⅲ射线垂直时,再顺时针向运动时,,根据题意可知,,,根据(1)中结论,,,可计算出与代数式,再根据平行线的性质,可列等量关系,求解可得出结论.
【详解】
解:(1)延长与相交于点,
如图1,
,
,
,
;
(2)①Ⅰ如图2,
,,
,
射线运动的时间(秒,
射线旋转的角度,
又,
;
Ⅱ如图3所示,
,,
,
射线运动的时间(秒,
射线旋转的角度,
又,
;
的度数为或;
②Ⅰ当由运动如图4时,
与相交于点,
根据题意可知,经过秒,
,,
,
,
又,
,
解得(秒;
Ⅱ当运动到,再由运动到如图5时,
与相交于点,
根据题意可知,经过秒,
,
,
,,
运动的度数可得,,
解得;
Ⅲ当由运动如图6时,,
根据题意可知,经过秒,
,,
,,
,,
又,
,
,
解得(秒),
当的值为秒或或秒时,.
【点睛】
本题主要考查平行线性质,合理添加辅助线和根据题意画出相应的图形时解决本题的关键.
15.(1),见解析;(2);(3)60°
【分析】
(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;
(2)如图2,
解析:(1),见解析;(2);(3)60°
【分析】
(
展开阅读全文